Skip to main content

Self-Assembly of Fused Homo-Oligomers to Create Nanotubes

  • Protocol
Nanostructure Design

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 474))

  • 1171 Accesses

Summary

The formation of a nanostructure by self-assembly of a peptide or protein building block depends on the ability of the building block to spontaneously assemble into an ordered structure. We first describe a protocol of fusing homo-oligomer proteins with a given three-dimensional (3D) structure to create new building blocks. According to this protocol, a single monomer A that self-assembles with identical copies to create an oligomer A 1 is covalently linked, through a short linker L, to another monomer B that self-assembles with identical copies to create the oligomer B j . The result is a fused monomer A - L - B, which has the ability to self-assemble into a nanostructure (A - L - B) k . We control the self-assembly process of A - L - B by mapping the fused building block onto a planar sheet and wrapping the sheet around a cylinder with the target's dimensions. Finally, we validate the created nanotubes by an optimization procedure. We provide examples of two nanotubes in atomistic model details. One of these has experimental data. In principal, such a protocol should enable the creation of a wide variety of potentially useful protein-based nanotubes with control over their physical and chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferrari M. (2005) Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171.

    Article  CAS  Google Scholar 

  2. Ferrari M. (2005) Nanovector therapeutics. Curr. Opin. Chem. Biol. 9, 343–346.

    Article  CAS  Google Scholar 

  3. Ma B, Nussinov R. (2002) Stabilities and conformations of Alzheimers beta-amyloid peptide oligomers (Abeta 16–22, Abeta 16–35, and Abeta 10–35): sequence effects. Proc. Natl. Acad. Sci. U. S. A. 99, 14126–14131.

    Article  CAS  Google Scholar 

  4. Zhang S. (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171–1178.

    Article  CAS  Google Scholar 

  5. Tsai CJ, Zheng J, Aleman C, Nussinov R. (2006) Structure by design: from single proteins and their building blocks to nanostructures. Trends Biotechnol. 24, 449–454.

    Article  CAS  Google Scholar 

  6. Haspel N, Zanuy D, Aleman C, Wolfson H, Nussinov R. (2006) De novo tubular nanostructure design based on self-assembly of beta-helical protein motifs. Structure 14, 1137–1148.

    Article  CAS  Google Scholar 

  7. Yemini M, Reches M, Rishpon J, Gazit E. (2005) Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano. Lett. 5, 183–186.

    Article  CAS  Google Scholar 

  8. Beniash E, Hartgerink JD, Storrie H, Stendahl JC, Stupp SI. (2005) Self-assembling peptide amphiphile nanofiber matrices for cell entrapment. Acta Biomater. 1, 387–397.

    Article  Google Scholar 

  9. Horne WS, Stout CD, Ghadiri MR. (2003) (A heterocyclic peptide nanotube. J. Am. Chem. Soc. 125, 9372–9376.

    Article  CAS  Google Scholar 

  10. Kohli RM, Walsh CT, Burkart MD. (2002) Biomimetic synthesis and optimization of cyclic peptide antibiotics. Nature 418, 658–661.

    Article  CAS  Google Scholar 

  11. Frank R. (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports—principles and applications. J. Immunol. Methods 267, 13–26.

    Article  CAS  Google Scholar 

  12. Padilla JE, Colovos C, Yeates TO. (2001) Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc. Natl. Acad. Sci. U. S. A. 98, 2217–2221.

    Article  CAS  Google Scholar 

  13. Tsai CJ, Zheng J, Nussinov R. (2006) Designing a nanotube using naturally occurring protein building blocks. PLoS Comput. Biol. 2, e42.

    Google Scholar 

  14. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. (1983) CHARMM—a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217.

    Article  CAS  Google Scholar 

  15. Berman HM, Westbrook J, Feng Z, et al. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235–242.

    Article  CAS  Google Scholar 

  16. Phillips JC, Braun R, Wang W, et al. (2005) Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802.

    Article  CAS  Google Scholar 

  17. Shatsky M, Nussinov R, Wolfson HJ. (2004) A method for simultaneous alignment of multiple protein structures. Proteins 56, 143–156.

    Article  CAS  Google Scholar 

  18. Pearson WR, Lipman DJ. (1988) Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. U. S. A. 85, 2444–2448.

    Article  CAS  Google Scholar 

  19. Smith TF, Waterman MS. (1981) Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197.

    Article  CAS  Google Scholar 

  20. Akey DL, Malashkevich VN, Kim PS. (2001) Buried polar residues in coiled-coil interfaces. Biochemistry 40, 6352–6360.

    Article  CAS  Google Scholar 

  21. Davison TS, Nie X, Ma W, et al. (2001) Structure and functionality of a designed p53 dimer. J. Mol. Biol. 307, 605–617.

    Article  CAS  Google Scholar 

  22. Thoden JB, Firestine SM, Benkovic SJ, Holden HM. (2002) PurT-encoded glyc-inamide ribonucleotide transformylase. Accommodation of adenosine nucleotide analogs within the active site. J. Biol. Chem. 277, 23898–23908.

    Article  CAS  Google Scholar 

  23. Li S, Hill CP, Sundquist WI, Finch JT. (2000) Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature 407, 409–413.

    Article  CAS  Google Scholar 

  24. Monaco-Malbet S, Berthet-Colominas C, Novelli A, et al. (2000). Mutual confor-mational adaptations in antigen and antibody upon complex formation between an Fab and HIV-1 capsid protein p24. Structure 8, 1069–1077.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nurit Haspel and Dan Fishelovitch for their help and support. The computation times were provided by the National Cancer Institutes Frederick Advanced Biomedical Supercomputing Center and by the high-performance computational capabilities of the Biowulf PC/Linux cluster at the National Institutes of Health (NIH), Bethesda, Maryland (http://biowulf.nih.gov). This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract number NO1-CO-12400. This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. The content of this publication does not necessarily reflect the view or policies of the Department of Health and Human Services, and mention of trade names, commercial products, or organization does not imply endorsement by the U.S. government.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Buch, I., Tsai, CJ., Wolfson, H.J., Nussinov, R. (2008). Self-Assembly of Fused Homo-Oligomers to Create Nanotubes. In: Gazit, E., Nussinov, R. (eds) Nanostructure Design. Methods in Molecular Biology™, vol 474. Humana Press. https://doi.org/10.1007/978-1-59745-480-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-480-3_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-35-0

  • Online ISBN: 978-1-59745-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics