Skip to main content

Epitope Mapping by Proteolysis of Antigen–Antibody Complexes

  • Protocol
  • First Online:
Epitope Mapping Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 524))

Summary

The ability to accurately characterize an epitope on an antigen is essential to understand the pathogenesis of an infectious material, and for the design and development of drugs and vaccines. Emergence of a new contagious microbial or viral variant necessitates the need for robust identification and characterization of the antigenic determinant. Recent advances have made mass spectrometry (MS) a robust and sensitive analytical tool with high mass accuracy. The use of MS to characterize peptides and proteins has gained popularity in the research arena involving protein–protein interactions. Combining the modern mass spectrometric principles of protein–protein interaction studies with the classical use of limited proteolysis, a linear epitope on a peptide or a protein antigen can be accurately mapped in a short time, compared with other traditional techniques available for epitope mapping. Additionally, complete MS analyses can be achieved with very little sample consumption. Here we discuss the overall approach to characterize the detailed interaction between a linear antigen (either a peptide or a protein antigen) and its corresponding monoclonal antibody by using MS. The steps involved in epitope excision, epitope extraction, and indirect immunosorption are outlined thoroughly. Conditions required for MS analysis using either matrix assisted laser desorption ionization (MALDI) or electrospray ionization (ESI) sources are summarized, with special emphasis on the experimental protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuby, J. (ed.) (1997) Immunology. W.H. Freeman and Co., New York, NY.

    Google Scholar 

  2. Hager-Braun, C., and Tomer, K. B. (2005) Determination of protein-derived epitopes by mass spectrometry. Expert Rev. Proteomics 2, 745–756.

    Article  PubMed  CAS  Google Scholar 

  3. Laver, W. G., Air, G. M., Webster, R. G., and Smithgill, S. J. (1990) Epitopes on protein antigens: misconceptions and realities. Cell 61, 553–556.

    Article  PubMed  CAS  Google Scholar 

  4. Harlow, E., and Lane, D. (eds.) (1988) Anti-­­bodies–a laboratory manual. Cold Spring Harbor, New York, NY, pp. 23–36.

    Google Scholar 

  5. Zhu, C. S., Liu, X. S., Feng, J. N., Zhang, W., Shen, B. F., Ou’yang, W., Cao, Y. X., and Jin, B. Q. (2006) Characterization of the neutralizing activity of three anti-human TNF monoclonal antibodies and prediction of their TNF epitopes by molecular modeling and mutant protein approach. Immunol. Lett. 102, 177–183.

    Article  PubMed  CAS  Google Scholar 

  6. Cerutti, M. L., Ferreiro, D. U., Sanguineti, S., Goldbaum, F. A., and de Prat-Gay, G. (2006) Antibody recognition of a flexible epitope at the DNA binding site of the human papillomavirus transcriptional regulator E2. Biochemistry 45, 15520–15528.

    Article  PubMed  CAS  Google Scholar 

  7. Bentley, G. A., Bhat, T. N., Boulot, G., Fischmann, T., Navaza, J., Poljak, R. J., Riottot, M. M., and Tello, D. (1989) Immunochemical and crystallographic studies of antibody D1.3 in its free, antigen-liganded, and idiotope-bound states. Cold Spring Harb. Sym. 54, 239–245.

    Article  CAS  Google Scholar 

  8. Lescar, J., Stouracova, R., Riottot, M. M., Chitarra, V., Brynda, J., Fabry, M., Horejsi, M., Sedlacek, J., and Bentley, G. A. (1997) Three-dimensional structure of an Fab–peptide complex: structural basis of HIV-1 protease inhibition by a monoclonal antibody. J. Mol. Biol. 267, 1207–1222.

    Article  PubMed  CAS  Google Scholar 

  9. Padlan, E. A. (1994) Anatomy of the antibody molecule. Mol. Immunol. 31, 169–217.

    Article  PubMed  CAS  Google Scholar 

  10. Padlan, E. A., Abergel, C., and Tipper, J. P. (1995) Identification of specificity-determining residues in antibodies. FASEB J. 9, 133–139.

    PubMed  CAS  Google Scholar 

  11. Tormo, J., Blaas, D., Parry, N. R., Rowlands, D., Stuart, D., and Fita, I. (1994) Crystal structure of a human rhinovirus neutralizing antibody complexed with a peptide derived from viral capsid protein VP2. EMBO J. 13, 2247–2256.

    PubMed  CAS  Google Scholar 

  12. Hager-Braun, C., Katinger, H., and Tomer, K. B. (2006) The HIV-neutralizing monoclonal antibody 4E10 recognizes N-terminal sequences on the native antigen. J. Immunol. 176, 7471–7481.

    PubMed  CAS  Google Scholar 

  13. Papac, D. I., Hoyes, J., and Tomer, K. B. (1994) Epitope mapping of the gastrin-releasing peptide/antibombesin monoclonal antibody complex by proteolysis followed by matrix-assisted laser desorption ionization mass spectrometry. Protein Sci. 3, 1485–1492.

    Article  PubMed  CAS  Google Scholar 

  14. Parker, C. E., Papac, D. I., Trojak, S. K., and Tomer, K. B. (1996) Epitope mapping by mass spectrometry: determination of an epitope on HIV-1 IIIB p26 recognized by a monoclonal antibody. J. Immunol. 157, 198–206.

    PubMed  CAS  Google Scholar 

  15. Parker, C. E., and Tomer, K. B. (2002) MALDI/MS-based epitope mapping of antigens bound to immobilized antibodies. Mol. Biotechnol. 20, 49–62.

    Article  PubMed  CAS  Google Scholar 

  16. Peter, J. F., and Tomer, K. B. (2001) A general strategy for epitope mapping by direct MALDI-TOF mass spectrometry using secondary antibodies and cross-linking. Anal. Chem. 73, 4012–4019.

    Article  PubMed  CAS  Google Scholar 

  17. Purcell, A. W., and Gorman, J. J. (2001) The use of post-source decay in matrix-assisted laser desorption/ionisation mass spectrometry to delineate T cell determinants. J. Immunol. Methods 249, 17–31.

    Article  PubMed  CAS  Google Scholar 

  18. Purcell, A. W., and Gorman, J. J. (2004) Immunoproteomics: mass spectrometry-based methods to study the targets of the immune response. Mol. Cell Proteomics 3, 193–208.

    Article  PubMed  CAS  Google Scholar 

  19. Purcell, A. W., Zeng, W. G., Mifsud, N. A., Ely, L. K., MacDonald, W. A., and Jackson, D. C. (2003) Dissecting the role of peptides in the immune response: theory, practice and the application to vaccine design. J. Pept. Sci. 9, 255–281.

    Article  PubMed  CAS  Google Scholar 

  20. Anglister, J., Scherf, T., Zilber, B., Levy, R., Zvi, A., Hiller, R., and Feigelson, D. (1993) Two-dimensional NMR investigations of the interactions of antibodies with peptide antigens. FASEB J. 7, 1154–1162.

    PubMed  CAS  Google Scholar 

  21. Scherf, T., and Anglister, J. (1993) A T1 rho-filtered two-dimensional transferred NOE spectrum for studying antibody interactions with peptide antigens. Biophys. J. 64, 754–761.

    Article  PubMed  CAS  Google Scholar 

  22. Butler, J. E. (2000) Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods 22, 4–23.

    Article  PubMed  CAS  Google Scholar 

  23. Mullett, W. M., Lai, E. P. C., and Yeung, J. M. (2000) Surface plasmon resonance-based immunoassays. Methods 22, 77–91.

    Article  PubMed  CAS  Google Scholar 

  24. Wang, L. F., and Yu, M. (2004) Epitope identification and discovery using phage display libraries: applications in vaccine development and diagnostics. Curr. Drug Targets 5, 1–15.

    Article  PubMed  Google Scholar 

  25. Williams, J. G., Tomer, K. B., Hioe, C. E., Zolla-Pazner, S., and Norris, P. J. (2006) The antigenic determinants on HIV p24 for CD4+ T cell inhibiting antibodies as determined by limited proteolysis, chemical modification, and mass spectrometry. J. Am. Soc. Mass Spectrom. 17, 1560–1569.

    Article  PubMed  CAS  Google Scholar 

  26. Jemmerson, R., and Blankenfeld, R. (1989) Affinity consideration in the design of synthetic vaccines intended to elicit antibodies. Mol. Immunol. 26, 301–307.

    Article  PubMed  CAS  Google Scholar 

  27. Parham, P. (1983) On the fragmentation of monoclonal IgG1, IgG2a, and IgG2b from BALB/c mice. J. Immunol. 131, 2895–2902.

    PubMed  CAS  Google Scholar 

  28. Borchers, C., and Tomer, K. B. (1999) Characterization of the noncovalent complex of human immunodeficiency virus glycoprotein 120 with its cellular receptor CD4 by matrix-assisted laser desorption/ionization mass spectrometry. Biochemistry 38, 11734–11740.

    Article  PubMed  CAS  Google Scholar 

  29. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71.

    Article  PubMed  CAS  Google Scholar 

  30. Loo, J. A. (2000) Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes. Int. J. Mass Spectrom. 200, 175–186.

    Article  CAS  Google Scholar 

  31. Sobott, F., and Robinson, C. V. (2002) Proteincomplexes gain momentum. Curr. Opin. Struct. Biol. 12, 729–734.

    Article  PubMed  CAS  Google Scholar 

  32. Tanaka, K. (2003) The origin of macromole-cule ionization by laser irradiation. Angew. Chem. Int. Edit. 42, 3860–3870.

    Article  Google Scholar 

  33. Suckau, D., Kohl, J., Karwath, G., Schneider, K., Casaretto, M., Bittersuermann, D., and Przybylski, M. (1990) Molecular epitope identification by limited proteolysis of an immobilized antigen–antibody complex and mass spectrometric peptide mapping. Proc. Natl. Acad. Sci. USA 87, 9848–9852.

    Article  PubMed  CAS  Google Scholar 

  34. Macht, M., Marquardt, A., Deininger, S. O., Damoc, E., Kohlmann, M., and Przybylski, M. (2004) “Affinity-proteomics”: direct protein identification from biological material using mass spectrometric epitope mapping. Anal. Bioanal. Chem. 378, 1102–1111.

    Article  PubMed  CAS  Google Scholar 

  35. Suckau, D., Mak, M., and Przybylski, M. (1992) Protein surface topology-probing by selective chemical modification and mass spectrometric peptide mapping. Proc. Natl. Acad. Sci. USA 89, 5630–5634.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Leesa J. Deterding for helpful discussions. This work was supported by Intramural Research program, National Institute of Environmental Health Sciences, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth B. Tomer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dhungana, S., Williams, J.G., Fessler, M.B., Tomer, K.B. (2009). Epitope Mapping by Proteolysis of Antigen–Antibody Complexes. In: Schutkowski, M., Reineke, U. (eds) Epitope Mapping Protocols. Methods in Molecular Biology™, vol 524. Humana Press. https://doi.org/10.1007/978-1-59745-450-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-450-6_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-17-6

  • Online ISBN: 978-1-59745-450-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics