Skip to main content

Metabolic Flux Estimation in Mammalian Cell Cultures

  • Protocol
Animal Cell Biotechnology

Part of the book series: Methods in Biotechnology ((MIBT,volume 24))

Abstract

Metabolic flux analysis with its ability to quantify cellular metabolism is an attractive tool for accelerating cell line selection, medium optimization, and other bioprocess-development activities. In the stoichiometric flux estimation approach, unknown fluxes are determined using intracellular metabolite mass balance expressions and measured extracellular rates. The simplicity of the stoichiometric approach extends its application to most cell culture systems, and the steps involved in metabolic flux estimation by the stoichiometric method are presented in detail in this chapter. Specifically, overdetermined systems are analyzed because the extra measurements can be used to check for gross measurement errors and system consistency. Cell-specific rates comprise the input data for flux estimation, and the logistic modeling approach is described for robust specific rate estimation in batch and fed-batch systems. A simplified network of mammalian cell metabolism is used to illustrate the flux estimation procedure, and the steps leading up to the consistency index determination are presented. If gross measurement errors are detected, a technique for determining the source of gross measurement error is also described. A computer program that performs most of the calculations described in this chapter is presented and references to flux estimation software are provided. The procedure presented in this chapter should enable rapid metabolic flux estimation in any mammalian cell bioreaction network by the stoichiometric approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephanopoulos, G., Aristodou, A., and Nielsen, J. (1998) Metabolic Engineering. Principles and Methodologies, Academic Press, San Diego.

    Google Scholar 

  2. Stephanopoulos, G. (2002) Metabolic engineering: perspective of a chemical engineer. AIChE J. 48, 920–926.

    Article  CAS  Google Scholar 

  3. Stephanopoulos, G. and Stafford, D. E. (2002) Metabolic engineering: a new frontier of chemical reaction engineering. Chem. Eng. Sci. 57, 2595–2602.

    Article  CAS  Google Scholar 

  4. Bonarius, H. P., Hatzimanikatis, V., Meesters, K. P. H., de Gooijer, C. D., Schmid, G., and Tramper, J. (1996) Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechnol. Bioeng. 50, 229–318.

    Article  Google Scholar 

  5. Follstad, B. D., Balcarcel, R. R., Stephanopoulos, G., and Wang, D. I. (1999) Metabolic flux analysis of hybridoma continuous culture steady state multiplicity. Biotechnol. Bioeng. 63, 675–683.

    Article  PubMed  CAS  Google Scholar 

  6. Varma, A. and Palsson, B. O. (1994) Metabolic flux balancing: Basic concepts, scientific and practical use. Bio/Technology 12, 994–998.

    Article  CAS  Google Scholar 

  7. Bonarius, H. P., Ozemere, A., Timmerarends, T., Skrabal, P., Tramper, J., Schmid, G., and Heinzle, E. (2001) Metabolic-flux analysis of continuously cultured hybridoma cells using 13CO2 mass spectrometry in combination with 13C-Lactate nuclear magnetic resonance spectroscoopy and metabolite balancing. Biotechnol. Bioeng. 74, 528–538.

    Article  PubMed  CAS  Google Scholar 

  8. Forbes, N. S., Clark, D. S., and Blanch, H. W. (2001) Using isotopomer path tracing to quantify metabolic fluxes in pathway models containing reversible reactions. Biotechnol. Bioeng. 74, 196–211.

    Article  PubMed  CAS  Google Scholar 

  9. Wiechert, W. (2001) 13C Metabolic flux analysis. Metab. Eng. 3, 195–206.

    Article  PubMed  CAS  Google Scholar 

  10. Zupke, C. and Stephanopoulos, G. (1995) Intracellular flux analysis in hybridomas using mass balances and In Vitro 13C NMR. Biotechnol. Bioeng. 45, 292–303.

    Article  PubMed  CAS  Google Scholar 

  11. Szyperski, T., Bailey, J. E., and Wüthrich, K. (1996) Detecting and dissecting metabolic fluxes using biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy. Trends Biotechnol. 14, 453–458.

    Article  Google Scholar 

  12. Cruz, H. J., Moreira, J. L., and Carrondo, M. J. (1999) Metabolic shifts by nutrient manipulation in continuous cultures of BHK cells. Biotechnol. Bioeng. 66, 104–113.

    Article  PubMed  CAS  Google Scholar 

  13. Cruz, H. J., Ferreira, A. S., Freitas, C. M., Moreira, J. L., and Carrondo, M. J. (1999) Metabolic responses to different glucose and glutamine levels in baby hamster kidney cell culture. Appl. Microbiol. Biotechnol. 51, 579–585.

    Article  PubMed  CAS  Google Scholar 

  14. Altamirano, C., Illanes, A., Casablancas, A., Gámez, X., Cairo, J. J., and GÒdia, C. (2001) Analysis of CHO cells metabolic redistribution in a glutamate-based defined medium in continuous culture. Biotechnol. Prog. 17, 1032–1041.

    Article  PubMed  CAS  Google Scholar 

  15. Nyberg, G. B., Balcarcel, R. R., Follstad, B. D., Stephanopoulos, G., and Wang, D. I. (1999) Metabolism of peptide amino acids by Chinese hamster ovary cells grown in a complex medium, Biotechnol. Bioeng. 62, 324–335.

    Article  PubMed  CAS  Google Scholar 

  16. Bonarius, H. P., Houtman, J. H., Schmid, G., de Gooijer, C. D., and Tramper, J. (2000) Metabolic-flux analysis of hybridoma cells under oxidative and reductive stress using mass balance. Cytotechnology 32, 97–107.

    Article  PubMed  CAS  Google Scholar 

  17. Europa, A. F., Gambhir, A., Fu, P. C., and Hu, W. S. (2000) Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotechnol. Bioeng. 67, 25–34.

    Article  PubMed  CAS  Google Scholar 

  18. Zupke, C., Sinskey, A. J., and Stephanopoulos, G. (1995) Intracellular flux analysis applied to the effect of dissolved oxygen on hybridomas. Appl. Microbiol. Biotechnol. 44, 27–36.

    Article  PubMed  CAS  Google Scholar 

  19. Bonarius, H. P., Timmerarends, B., de Gooijer, C. D., and Tramper, J. (1998) Metabolite-balancing techniques vs. 13C tracer experiments to determine metabolic fluxes in hybridoma cells. Biotechnol. Bioeng. 58, 258–262.

    Article  PubMed  CAS  Google Scholar 

  20. Nadeau, I., Sabatié, J., Koehl, M., Perrier, M., and Kamen, A. (2000) Human 293 cell metabolism in low glutamine-supplied culture: Interpretation of metabolic changes through metabolic flux analysis. Metab. Eng. 2, 277–292.

    Article  PubMed  CAS  Google Scholar 

  21. de Graaf, A.A., Mahle, M., Möllney, M., Wiechert, W., Stahmann, P., and Sahm, H. (2000) Determination of full 13C isotopomer distributions for metabolic flux analysis using heteronuclear spin echo difference NMR spectroscopy. J. Biotechnol. 77, 25–35.

    Article  PubMed  Google Scholar 

  22. Schmidt, K., Carlsen, M., Nielsen, J., and Villadsen, J. (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol. Bioeng. 56, 831–840.

    Article  Google Scholar 

  23. van Winden, W. A., Heijnen, J. J., and Verheijen, P. J. T. (2002) Cumulative bandomers: A new concept in fluxanalysis from 2D[13C, 1H] COSY NMR data. Biotechnol. Bioeng. 80, 731–745.

    Article  PubMed  Google Scholar 

  24. Wiechert, W., Möllney, M., Petersen, S., and de Graaf, A. A. (2001) A universal framework for 13C metabolic flux analysis. Metab. Eng. 3, 265–283.

    Article  PubMed  CAS  Google Scholar 

  25. Xie, L. and Wang, D. I. C. (1996) Material balance studies on animal cell metabolism using a stoichiometrically based reaction network. Biotechnol. Bioeng. 52, 579–590.

    Article  PubMed  CAS  Google Scholar 

  26. Burgard, A. P. and Maranas, C. (2001) Review of the enzymes and metabolic pathways (EMP) database. Metab. Eng. 3, 193–194.

    Article  CAS  Google Scholar 

  27. Bree, M. A., Dhurjati, P., Geoghegan, R. F., and Robnett, B. (1988) Kinetic modeling of hybridoma cell growth and immunoglobulin production in a large-scale suspension culture. Biotechnol. Bioeng. 32, 1067–1072.

    Article  PubMed  CAS  Google Scholar 

  28. Dalili, M., Sayles, G. D., and Ollis, D. F (1990) Glutamine-limited batch hybridoma growth and antibody production: experiment and model. Biotechnol. Bioeng. 36, 74–82.

    Article  PubMed  CAS  Google Scholar 

  29. Linz, M., Zeng, A. P., Wagner, R., and Deckwer, W. D. (1997) Stoichiometry, kinetics and regulation of glucose and amino acid metabolism of a recombinant BHK cell line in batch and continuous culture. Biotechnol. Prog. 13, 453–463.

    Article  PubMed  CAS  Google Scholar 

  30. Altamirano, C., Paredes, C., Illanes, A., Cairo, J. J., and GÒdia, C. (2004) Strategies for fed-batch cultivation of t-PA producing CHO cells: substitution of glucose and glutamine and rational design of culture medium. J. Biotechnol. 110, 171–179.

    Article  PubMed  CAS  Google Scholar 

  31. Zhou, W.C., Chen, C.-C., Buckland, B., and Aunins, J. G. (1997) Fed-batch culture of recombinant NSO myeloma cells with high monoclonal antibody production. Biotechnol. Bioeng. 55, 783–792.

    Article  PubMed  CAS  Google Scholar 

  32. Goudar, C. T., Joeris, K., Konstantinov, K., and Piret, J. M. (2005) Logistic equations effectively model mammalian cell batch and fed-batch kinetics by logically constraining the fit. Biotechnol. Prog. 21, 1109–1118.

    Article  PubMed  CAS  Google Scholar 

  33. Balcarcel, R. R. and Clark, L. M. (2003) Metabolic screening of mammalian cell cultures using well-plates. Biotechnol. Prog. 19, 98–108.

    Article  PubMed  CAS  Google Scholar 

  34. van der Heijden, R. T. J. M., Romein, B., Heijnen, S., Hellinga, C., and Luyben, K. C. A. M. (1994) Linear constraint relations in biochemical reaction systems: II. Diagnosis and estimation gross errors. Biotechnol. Bioeng. 43, 11–20.

    Article  PubMed  Google Scholar 

  35. Wang, N. S. and Stephanopoulos, G. (1983) Application of macroscopic balances to the identification of gross measurement errors. Biotechnol. Bioeng. 25, 2177–2208.

    Article  PubMed  CAS  Google Scholar 

  36. Klamt, S., Schuster, S., and Gilles, E. D. (2002) Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple nonsulfur bacteria. Biotechnol. Bioeng. 77, 734–751.

    Article  PubMed  CAS  Google Scholar 

  37. Lee, D. Y., Hongsoek, Y., Park, S., and Lee, S. Y (2003) MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 19, 2144–2146.

    Article  PubMed  CAS  Google Scholar 

  38. Okayasu, T., Ikeda, M., Akimoto, K., and Sorimachi, K. (1997) The amino acid composition of mammalian and bacterial cells. Amino Acids 13, 379–391.

    Article  CAS  Google Scholar 

  39. Bonarius, H. P., de Gooijer, C. D., Tramper, J., and Schmid, G. (1995) Determination of the respiration quotient in mammalian cell culture in bicarbonate buffered media. Biotechnol. Bioeng. 45, 524–535.

    Article  PubMed  CAS  Google Scholar 

  40. Frahm, B., Blank, H.-C., Cornand, P., et al. (2002) Determination of dissolved CO2 concentration and CO2 production rate of mammalian cell suspension culture based on off-gas measurement. J. Biotechnol. 99, 133–148.

    Article  PubMed  CAS  Google Scholar 

  41. Fell, D. A. and Small, J. R. (1986) Fat synthesis is adipose tissue. An examination of stoichiometric constraints. J. Biochem. (Tokyo) 238, 781–786.

    CAS  Google Scholar 

  42. Majewski, R. A. and Domach, M. M. (1990) Simple constrained optimization view of acetate overflow in E. coli. Biotechnol. Bioeng. 35, 732–738.

    Article  PubMed  CAS  Google Scholar 

  43. Pramanik, J. and Keasling, J. D. (1997) A stoichiometric model of Escherichia coli metabolism. Incorporation of growth-rate-dependent biomass composition and mechanistic energy requirements. Biotechnol. Bioeng. 56, 398–421.

    Article  PubMed  CAS  Google Scholar 

  44. Savinell, J. M. and Palsson, B. O. (1992) Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formulation. J. Theor. Biol. 154, 421–454.

    Article  PubMed  CAS  Google Scholar 

  45. Savinell, J. M. and Palsson, B. O. (1992) Network analysis of intermediary metabolism using linear optimization. II. Interpretation of hybridoma cell metabolism. J. Theor. Biol. 154, 455–473.

    Article  PubMed  CAS  Google Scholar 

  46. Varma, A., Boesch, B. W., and Palsson, B. O. (1993) Biochemical production capabilities of Escherichia coli. Biotechnol. Bioeng. 42, 59–73.

    Article  PubMed  CAS  Google Scholar 

  47. Madron, F., Veverka, V., and Vanecek, V. (1977) Stastical analysis of material balance of a chemical reactor. AIChE J. 23, 482–486.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Goudar, C.T., Biener, R., Piret, J.M., Konstantinov, K.B. (2007). Metabolic Flux Estimation in Mammalian Cell Cultures. In: Pörtner, R. (eds) Animal Cell Biotechnology. Methods in Biotechnology, vol 24. Humana Press. https://doi.org/10.1007/978-1-59745-399-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-399-8_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-660-3

  • Online ISBN: 978-1-59745-399-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics