Skip to main content

Nuclear Magnetic Resonance Methods for Monitoring Cell Growth and Metabolism in Intensive Bioreactors

  • Protocol
Animal Cell Biotechnology

Part of the book series: Methods in Biotechnology ((MIBT,volume 24))

  • 1824 Accesses

Abstract

Magnetic resonance imaging (MRI) and spectroscopy (MRS) are powerful noninvasive techniques that can be used to monitor the behavior of cells in intensive bioreactor systems. We describe here a number of nuclear magnetic resonance (NMR)-based techniques that have been used successfully to investigate cell growth and distribution, cellular energetics and the porosity to medium flow and linear flow velocity profiles around and across cell layers in perfusion bioreactors. These are important parameters to determine when designing bioreactor systems and operation protocols that optimize cell productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gadian, D. G. and Radda, G. K. (1981) NMR studies of tissue metabolism. Annu. Rev. Biochem. 50, 69–83.

    Article  PubMed  CAS  Google Scholar 

  2. Radda, G. K. (1986) The use of NMR spectroscopy for the understanding of disease. Science 233(4764), 640–645.

    Article  PubMed  CAS  Google Scholar 

  3. Radda, G. K. (1992) Control, bioenergetics, and adaptation in health and disease: non-invasive biochemistry from nuclear magnetic resonance. FASEB J. 6(12), 3032–3038.

    PubMed  CAS  Google Scholar 

  4. Shulman, R. G., Brown, T. R., Ugurbil, K., Ogawa, S., Cohen, S. M., and den Hollander, J. A. (1979) Cellular applications of 31P and 13C nuclear magnetic resonance. Science 205(4402), 160–166.

    Article  PubMed  CAS  Google Scholar 

  5. Avison, M. J., Hetherington, H. P. and Shulman, R. G. (1986) Applications of NMR to studies of tissue metabolism. Annu. Rev. Biophys. Chem. 15, 377–402.

    Article  CAS  Google Scholar 

  6. Cohen, J. S., Jaroszewski, J. W., Kaplan, O., Ruiz-Cabello, J., and Collier, S. W. (1995) A history of biological applications of NMR spectroscopy. Prog. NMR Spectrosc. 28(1), 53–85.

    Article  CAS  Google Scholar 

  7. Gadian, D. S. (1995) NMR and Its Applications to Living Systems, 2nd ed., Oxford Science Publications, Oxford.

    Google Scholar 

  8. Griffin, J. L. and Shockcor, J. P. (2004) Metabolic profiles of cancer cells. Nat. Rev. Cancer 4(7), 551–561.

    Article  PubMed  CAS  Google Scholar 

  9. Lindon, J. C., Holmes, E., and Nicholson, J. K. (2001) Pattern recognition methods and applications in biomedical magnetic resonance. Prog. Nucl. Mag. Res. Sp. 39(1), 1–40.

    Article  CAS  Google Scholar 

  10. Sanders, J. K. M. (1987) Modern NMR Spectroscopy: A Guide for Chemist, Oxford University Press, Oxford.

    Google Scholar 

  11. Brindle, K. M. (1998) Investigating the performance of intensive mammalian cell bioreactor systems using magnetic resonance imaging and spectroscopy. Biotechnol. Genet. Eng. Rev. 15, 499–520.

    PubMed  CAS  Google Scholar 

  12. Molowa, D. T. and Mazanet, R. (2003) The state of biopharmaceutical manufacturing. Biotechnol. Annu. Rev. 9, 285–302.

    Article  PubMed  Google Scholar 

  13. Martin, I., Wendt, D., and Heberer, M. (2004) The role of bioreactors in tissue engineering. Trends Biotechnol. 22(2), 80–86.

    Article  PubMed  CAS  Google Scholar 

  14. McGovern, K. A. (1994) Bioreactors in NMR in Physiology and Biomedicine (Gillies, R.J. ed.), Academic Press, London.

    Google Scholar 

  15. Callies, R., Jackson, M. E., and Brindle, K. M. (1994) Measurements of the growth and distribution of mammalian cells in a hollow-fiber bioreactor using nuclear magnetic resonance imaging. Biotechnology (NY) 12(1), 75–78.

    Article  CAS  Google Scholar 

  16. Galons, J. P., Job, C., and Gillies, R. J. (1995) Increase of GPC levels in cultured mammalian cells during acidosis. A 31P MR spectroscopy study using a continuous bioreactor system. Magn. Reson. Med. 33(3), 422–426.

    Article  PubMed  CAS  Google Scholar 

  17. Neves, A. A., Medcalf, N., and Brindle, K. (2003) Functional assessment of tissue-engineered meniscal cartilage by magnetic resonance imaging and spectroscopy. Tissue Eng. 9(1), 51–62.

    Article  PubMed  CAS  Google Scholar 

  18. Potter, K., Butler, J. J., Horton, W. E., and Spencer, R. G. (2000) Response of engineered cartilage tissue to biochemical agents as studied by proton magnetic resonance microscopy. Arthritis Rheum. 43(7), 1580–1590.

    Article  PubMed  CAS  Google Scholar 

  19. Arnold, D. L., Matthews, P. M., and Radda, G. K. (1984) Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31P NMR. Magn. Reson. Med. 1(3), 307–315.

    Article  PubMed  CAS  Google Scholar 

  20. Kintner, D. B., Anderson, M. K., Fitzpatrick, Jr., J. H., Sailor, K. A., and Gilboe, D. D. (2000) 31P-MRS-based determination of brain intracellular and interstitial pH: its application to in vivo H+ compartmentation and cellular regulation during hypoxic/ischemic conditions. Neurochem. Res. 25(9–10), 1385–1396.

    Article  PubMed  CAS  Google Scholar 

  21. Stejskal, E. O. (1965) Spin diffusion measurements: spin-echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292.

    Article  CAS  Google Scholar 

  22. Hakumaki, J. M., Poptani, H., Puumalainen, A. M., et al. (1998) Quantitative 1H nuclear magnetic resonance diffusion spectroscopy of BT4C rat glioma during thymidine kinase-mediated gene therapy in vivo: identification of apoptotic response. Cancer Res. 58(17), 3791–3799.

    PubMed  CAS  Google Scholar 

  23. Van Zijl, P. C., Moonen, C. T., Faustino, P., Pekar, J., Kaplan, O., and Cohen, J. S. (1991) Complete separation of intracellular and extracellular information in NMR spectra of perfused cells by diffusion-weighted spectroscopy. Proc. Natl. Acad. Sci. USA 88(8), 3228–3232.

    Article  PubMed  Google Scholar 

  24. Thelwall, P. E. and Brindle, K. M. (1999) Analysis of CHO-K1 growth in a fixed bed bioreactor using magnetic resonance spectroscopy and imaging. Cytotechnology 3, 121–132.

    Article  Google Scholar 

  25. Neves, A. A., Medcalf, N., and Brindle, K. M. (2002) Tissue engineering of meniscal cartilage using perfusion culture. Ann. NY Acad. Sci. 961, 352–355.

    Article  PubMed  Google Scholar 

  26. Thelwall, P. E., Neves, A. A., and Brindle, K. M. (2001) Measurement of bioreactor perfusion using dynamic contrast agent-enhanced magnetic resonance imaging. Biotechnol. Bioeng. 75(6), 682–690.

    Article  PubMed  CAS  Google Scholar 

  27. Williams, S. N., Callies, R. M., and Brindle, K. M. (1997) Mapping of oxygen tension and cell distribution in a hollow fiber bioreactor using magnetic resonance imaging. Biotechnol. Bioeng. 56, 56–61.

    Article  PubMed  CAS  Google Scholar 

  28. Stabler, C. L., Long, R. C., Sambanis, A., and Constantinidis, I. (2005) Non-invasive measurement of viable cell number in tissue-engineered constructs in vitro, using 1H nuclear magnetic resonance spectroscopy. Tissue Eng. 11(3–4), 404–414.

    Article  PubMed  CAS  Google Scholar 

  29. Mancuso, A., Fernandez, E. J., Blanch, H. W., and Clark, D. S. (1990) A nuclear magnetic resonance technique for determining hybridoma cell concentration in hollow fiber bioreactors. Biotechnology (NY) 8(12), 1282–1285.

    Article  CAS  Google Scholar 

  30. Petersen, E. F., Fishbein, K. W., McFarland, E. W., and Spencer, R. G. (2000) 31P NMR spectroscopy of developing cartilage produced from chick chondrocytes in a hollow-fiber bioreactor. Magn. Reson. Med. 44(3), 367–372.

    Article  PubMed  CAS  Google Scholar 

  31. Macdonald, J. M., Grillo, M., Schmidlin, O., Tajiri, D. T., and James, T. L. (1998) NMR spectroscopy and MRI investigation of a potential bioartificial liver. NMR Biomed. 11(2), 55–66.

    Article  PubMed  CAS  Google Scholar 

  32. Papas, K. K., Long, Jr., R. C., Constantinidis, I, and Sambanis, A. (2000) Effects of short-term hypoxia on a transformed cell-based bioartificial pancreatic construct. Cell Transplant. 9(3), 415–422.

    PubMed  CAS  Google Scholar 

  33. Callies, R. and Brindle, K. M. (1996) Nuclear magnetic resonance studies of cell metabolism in vivo, in Bittar, E. E. and Bittar, N., eds., Principles of Medical Biology; Cell Chemistry and Physiology: Part III, Vol. 4. Elsevier Science, New York, NY, pp. 241–269.

    Google Scholar 

  34. Jeffrey, F. M., Rajagopal, A., Malloy, C. R. and Sherry, A. D. (1991) 13C-NMR: a simple yet comprehensive method for analysis of intermediary metabolism. Trends. Biochem. Sci. 16(1), 5–10.

    Article  PubMed  CAS  Google Scholar 

  35. Sherry, A. D. and Malloy, C. R. (1996) Isotopic methods for probing organization of cellular metabolism. Cell Biochem. Fund. 14(4), 259–268.

    CAS  Google Scholar 

  36. Blank, L. M., Kuepfer, L., and Sauer, U. (2005) Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol. 6(6), R49.

    Article  PubMed  Google Scholar 

  37. Mancuso, A., Sharfstein, S. T., Tucker, S. N., Clark, D. S., and Blanch, H. W. (1994) Examination of primary metabolic pathways in a murine hybridoma with carbon-13 nuclear magnetic resonance spectroscopy. Biotechnol. Bioeng. 44, 563–585.

    Article  PubMed  CAS  Google Scholar 

  38. Street, J. C., Delort, A. M., Braddock, P. S. H., and Brindle, K. (1993) A 1H/15N NMR study of nitrogen metabolism in cultured mammalian cells. Biochem. J. 291, 485–492.

    PubMed  CAS  Google Scholar 

  39. Hammer, B. E., Heath, C. A., Mirer, S. D., and Belfort, G. (1990) Quantitative flow measurements in bioreactors by nuclear magnetic resonance imaging. Biotechnology (NY) 8(4), 327–330.

    Article  CAS  Google Scholar 

  40. Constantinidis, I. and Sambanis, A. (1995) Towards the development of artificial endocrine tissues: 31P NMR spectroscopic studies of immunoisolated, insulin-secreting AtT-20 cells. Biotechnol. Bioeng. 47, 431–443.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Neves, A.A., Brindle, K.M. (2007). Nuclear Magnetic Resonance Methods for Monitoring Cell Growth and Metabolism in Intensive Bioreactors. In: Pörtner, R. (eds) Animal Cell Biotechnology. Methods in Biotechnology, vol 24. Humana Press. https://doi.org/10.1007/978-1-59745-399-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-399-8_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-660-3

  • Online ISBN: 978-1-59745-399-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics