Skip to main content

Neurospora crassa as a Model Organism for Mitochondrial Biogenesis

  • Protocol
Mitochondria

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 372))

Abstract

Neurospora crassa has proven to be an excellent organism for studying various aspects of the biology of mitochondria by biochemical and genetic approaches. As N. crassa is an obligate aerobe and contains complex I, its mitochondria are more similar to mammalian mitochondria than those of yeast. The recent sequencing of the genome of N. crassa and a gene knockout project that is under way make the organism even more attractive. We describe some of the advantages of N. crassa as a model organism and present methods for isolation of mitochondria, fractionation of these organelles, and disruption of essential genes in this organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beadle, G. W., and Tatum, E. L. (1941) Genetic control of biochemical reactions in Neurospora. Proc. Natl. Acad. Sci. USA 27, 499–506.

    Article  CAS  PubMed  Google Scholar 

  2. Davis, R. H., and De Serres, F. J. (1970) Genetic and microbiological research techniques for Neurospora crassa. Methods Enzymol. 17, 79–143.

    Article  Google Scholar 

  3. Perkins, D. D. (1992) Neurospora: the organism behind the molecular revolution. Genetics 130, 687–701.

    CAS  PubMed  Google Scholar 

  4. Perkins, D. D., Radford, A., and Sachs, M. S. (2001) The Neurospora Compendium. Chromosomal Loci, Academic Press, San Diego, CA.

    Google Scholar 

  5. Davis, R. H. (2000) Neurospora. Contributions of a Model Organism, Oxford University Press, Oxford, UK.

    Google Scholar 

  6. Galagan, J. E., Calvo, S. E., Borkovich, K. A., et al. (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422, 859–868.

    Article  CAS  PubMed  Google Scholar 

  7. Borkovich, K. A., Alex, L. A., Yarden, O., et al. (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Micro. Mol. Biol. Rev. 68, 1–108.

    Article  CAS  Google Scholar 

  8. Colot, H. V., Park, G., Turner, G.E., et al. (2006) A high-throughput gene Knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc. Natl. Acad. Sci. USA 103, 10,352–10,357.

    Article  CAS  PubMed  Google Scholar 

  9. Ninomiya, Y., Suzuki, K., Ishii, C., and Inoue, H. (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc. Natl. Acad. Sci. USA 101, 12,248–12,253.

    Article  CAS  PubMed  Google Scholar 

  10. Selker, E. U. (1990) Premeiotic instability of repeated sequences in Neurospora crassa. Annu. Rev. Genet. 24, 579–613.

    Article  CAS  PubMed  Google Scholar 

  11. Harkness, T. A. A., Metzenberg, R. L., Schneider, H., Lill, R., Neupert, W., and Nargang, F. E. (1994) Inactivation of the Neurospora crassa gene encoding the mitochondrial protein import receptor MOM19 by the technique of “sheltered RIP”. Genetics 136, 107–118.

    CAS  PubMed  Google Scholar 

  12. Grad, L., Descheneau, A., Neupert, W., Lill, R., and Nargang, F. (1999) Inactivation of the Neurospora crassa mitochondrial outer membrane protein TOM70 by repeat-induced point mutation (RIP) causes defects in mitochondrial protein import and morphology. Curr. Genet. 36, 137–146.

    Article  CAS  PubMed  Google Scholar 

  13. Taylor, R., McHale, B., and Nargang, F. E. (2003) Characterization of Neurospora crassa Tom40-deficient mutants and effect of specific mutations on Tom40 assembly. J. Biol. Chem. 278, 765–775.

    Article  CAS  PubMed  Google Scholar 

  14. Rountree, M. R., and Selker, E. U. (1997) DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev. 11, 2383–2395.

    Article  CAS  PubMed  Google Scholar 

  15. Kennell, J. C., Collins, R. A., Griffiths, A. J. F., and Nargang, F. E. (2004) Mitochondrial genetics of Neurospora, in The Mycota II. Genetics and Biotechnology (Kück, U., ed.), 2nd Ed., Springer-Verlag, Berlin, pp. 95–112.

    Google Scholar 

  16. Schmitt, S.H., Prokisch, H., Schlunk, T., et al. (2006) Proteome analysis of mitochondrial outer membrane from Neurospora crassa. Proteomics 6, 72–80.

    Article  CAS  PubMed  Google Scholar 

  17. Videira, A., and Duarte, M. (2002) From NADH to ubiquinone in Neurospora mitochondria. Biochim. Biophys. Acta 1555, 187–191.

    Article  CAS  PubMed  Google Scholar 

  18. Chaudhuri, M., Ajayi, W., Temple, S., and Hill, G. C. (1995) Identification and partial purification of a stage specific 33 kDa mitochondrial protein as the alternative oxidase of Trypanosoma brucei brucei bloodstream trypanosomes. J. Eukaryot. Microbiol. 42, 467–472.

    Article  CAS  PubMed  Google Scholar 

  19. Joseph-Horne, T., Holloman, D. W., and Wood, P. M. (2001) Fungal respiration: a fusion of standard and alternative components. Biochim. Biophys. Acta 1504, 179–195.

    Article  CAS  PubMed  Google Scholar 

  20. Moore, A. L., Albury, M. S., Crichton, P. G., and Affourtit, C. (2002) Function of the alternative oxidase: is it still a scavenge? Trends Plant Sci. 7, 478–481.

    Article  CAS  PubMed  Google Scholar 

  21. Stenmark, P., and Nordlund, P. (2003) A prokaryotic alternative oxidase present in the bacterium Novosphingobium aromaticivorans. FEBS Lett. 552, 189–192.

    Article  CAS  PubMed  Google Scholar 

  22. McDonald, A. E., and Vanlerberghe, G. C. (2004) Branched mitochondrial electron transport in the animalia: presence of alternative oxidase in several animal phyla. IUBMB Life 56, 333–341.

    Article  CAS  PubMed  Google Scholar 

  23. Li, Q., Ritzel, R. G., McLean, L. T. T., et al. (1996) Cloning and analysis of the alternative oxidase of Neurospora crassa. Genetics 142, 129–140.

    CAS  PubMed  Google Scholar 

  24. Lambowitz, A. M., Sabourin, J. R., Bertand, H., Nickels, R., and McIntosh, L. (1989) Immunological identification of the alternative oxidase of Neurospora crassa mitochondria. Mol. Cell. Biol. 9, 1362–1364.

    CAS  PubMed  Google Scholar 

  25. Descheneau, A. T., Cleary, I. A., and Nargang, F. E. (2005) Genetic evidence for a regulatory pathway controlling alternative oxidase production in Neurospora crassa. Genetics 169, 123–135.

    Article  CAS  PubMed  Google Scholar 

  26. Hallermayer, G., Zimmermann, R., and Neupert, W. (1977) Kinetic studies on the transport of cytoplasmatically synthesized proteins into mitochondria in intact cells of Neurospora crassa. Eur. J. Biochem. 81, 523–532.

    Article  CAS  PubMed  Google Scholar 

  27. Kiebler, M., Pfaller, R., Söllner, T., et al. (1990) Identification of a mitochondrial receptor complex required for recognition and membrane insertion of precursor proteins. Nature 348, 610–616.

    Article  CAS  PubMed  Google Scholar 

  28. Söllner, T., Rassow, J., Wiedmann, M., et al. (1992) Mapping of the protein import machinery in the mitochondrial outer membrane by crosslinking of translocation intermediates. Nature 355, 84–87.

    Article  PubMed  Google Scholar 

  29. Künkele, K.-P., Heins, S., Dembowski, M., et al. (1998) The preprotein translocation channel of the outer membrane of mitochondria. Cell 93, 1009–1019.

    Article  PubMed  Google Scholar 

  30. Ahting, U., Thun, C., Hegerl, R., et al. (1999) The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J. Cell Biol. 147, 959–968.

    Article  CAS  PubMed  Google Scholar 

  31. Vasiljev, A., Ahting, U., Nargang, F. E., et al. (2004) Reconstituted TOM core complex and Tim9/Tim10 complex of mitochondria are sufficient for translocation of the ADP/ATP carrier across membranes. Mol. Biol. Cell 15, 1445–1458.

    Article  CAS  PubMed  Google Scholar 

  32. Nargang, F. E., Künkele, K.-P., Mayer, A., Ritzel, R. G., Neupert, W., and Lill, R. (1995)“Sheltered disruption” of Neurospora crassa MOM22, an essential component of the mitochondrial protein import complex. EMBO J. 14, 1099–1108.

    CAS  PubMed  Google Scholar 

  33. Staben, C., Jensen, B., Singer, M., Pollock, J., and Schechtman, M. (1989) Use of bacterial hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation. Fungal Genet. Newsl. 36, 79–81.

    Google Scholar 

  34. Grotelueschen, J., and Metzenberg, R. (1995) Some property of the nucleus determines the competence of Neurospora crassa for transformation. Genetics 139, 1545–1551.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Nargang, F.E., Rapaport, D. (2007). Neurospora crassa as a Model Organism for Mitochondrial Biogenesis. In: Leister, D., Herrmann, J.M. (eds) Mitochondria. Methods in Molecular Biology™, vol 372. Humana Press. https://doi.org/10.1007/978-1-59745-365-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-365-3_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-667-2

  • Online ISBN: 978-1-59745-365-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics