Skip to main content

Functional Analysis by Inducible RNA Interference in Drosophila melanogaster

  • Protocol
Mitochondria

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 372))

Abstract

Ribonucleic acid (RNA) interference triggered by double-stranded RNA has become a powerful tool for generating loss-of-function phenotypes. It is used to inactivate genes of interest and represents an elegant approach to genome functional analysis by reverse genetics. In Drosophila, RNA interference has been used in both cell culture and animals. We have adopted this approach to reveal the physiological roles of a number of proteins involved in mitochondrial deoxyribonucleic acid metabolism, and present here experimental schemes to induce the stable expression of double-stranded RNA in Schneider cells and in transgenic Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jorgensen, R. A. (2003) Sense cosuppression in plants: past, present and future, in RNAi: A Guide to Gene Silencing (Hannon, G. J., ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 5–22.

    Google Scholar 

  2. Cogoni, C., Irelan, J. T., Schumacher, M., Schmidhauser, T. J., Selker, E. U., and Macino, G. (1996) Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation. EMBO J. 15, 3153–3163.

    CAS  PubMed  Google Scholar 

  3. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  CAS  PubMed  Google Scholar 

  4. Cogoni, C. and Macino, G. (2000) Post-transcriptional gene silencing across kingdoms. Curr. Opin. Genet. Dev. 10, 638–643.

    Article  CAS  PubMed  Google Scholar 

  5. Tomari, Y. and Zamore, P. D. (2005) Perspective: machines for RNAi. Genes Dev. 19, 517–529.

    Article  CAS  PubMed  Google Scholar 

  6. Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.

    Article  CAS  PubMed  Google Scholar 

  7. Kennerdell, J. R. and Carthew, R. W. (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026.

    Article  CAS  PubMed  Google Scholar 

  8. Koelle, M. R., Talbot, W. S., Segraves, W. A., Bender, M. T., Cherbas, P., and Hogness, D. S. (1991) The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67, 59–77.

    Article  CAS  PubMed  Google Scholar 

  9. Brand, A. H. and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.

    CAS  PubMed  Google Scholar 

  10. Duffy, J. B. (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34, 1–15.

    Article  CAS  PubMed  Google Scholar 

  11. Spradling, A. C. (1986) P element-mediated transformation, in Drosophila a Practical Approach (Roberts, D. B., ed.), IRL Press, Oxford, UK, pp. 175–197.

    Google Scholar 

  12. Farr, C. L., Matsushima, Y., Lagina, A. T., 3rd, Luo, N., and Kaguni, L. S. (2004) Physiological and biochemical defects in functional interactions of mitochondrial DNA polymerase and DNA-binding mutants of single-stranded DNA-binding protein. J. Biol. Chem. 279, 17,047–17,053.

    Article  CAS  PubMed  Google Scholar 

  13. Lefai, E., Calleja, M., Ruiz de Mena, I., Lagina, A. T., 3rd, Kaguni, L. S., and Garesse, R. (2000) Overexpression of the catalytic subunit of DNA polymerase gamma results in depletion of mitochondrial DNA in Drosophila melanogaster. Mol. Gen. Genet. 264, 37–46.

    Article  CAS  PubMed  Google Scholar 

  14. Matsushima, Y., Adan, C., Garesse, R., and Kaguni, L. S. (2005) Drosophila mitochondrial transcription factor B1 modulates mitochondrial translation but not transcription or DNA copy number in Schneider cells. J. Biol. Chem. 280, 16,815–16,820.

    Article  CAS  PubMed  Google Scholar 

  15. Matsushima, Y., Garesse, R., and Kaguni, L. S. (2004) Drosophila mitochondrial transcription factor B2 regulates mitochondrial DNA copy number and transcription in Schneider cells. J. Biol. Chem. 279, 26,900–26,905.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Matsushima, Y., Adán, C., Garesse, R., Kaguni, L.S. (2007). Functional Analysis by Inducible RNA Interference in Drosophila melanogaster . In: Leister, D., Herrmann, J.M. (eds) Mitochondria. Methods in Molecular Biology™, vol 372. Humana Press. https://doi.org/10.1007/978-1-59745-365-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-365-3_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-667-2

  • Online ISBN: 978-1-59745-365-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics