Skip to main content

Manipulating Genes and Gene Copy Number by Bacterial Artificial Chromosome Transfection

  • Protocol
Cancer Genomics and Proteomics

Part of the book series: Methods in Molecularbiologyâ„¢ ((MIMB,volume 383))

  • 1758 Accesses

Abstract

Bacterial artificial chromosomes (BACs) provide a well-characterized resource for studying the organization and activity of entire genes, replicons, and other large genomic loci. Protocols and parameters that influence the efficient transfection of these large DNA molecules into cells in culture were described here. By carefully optimizing the conditions for the formation of compact transfection complexes, BACs can be introduced into a variety of mammalian cells with reasonable efficiency. In addition, by cotransfection with a dihydrofolate reductase or hypoxanthine guanine phosphoribosyl transferase BAC, stable cell lines can be generated that carry 2–15 tandem chromosomal copies of the BAC of interest, thus providing a new avenue for studying gene dosage effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shizuya, H., Birren, B., Ung-Jin, K., et al. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89, 8794–8797.

    Article  CAS  PubMed  Google Scholar 

  2. Montigny, W. J., Phelps, S. F., Illenye, S., and Heintz, N. H. (2003) Parameters influencing high-efficiency transfection of bacterial artificial chromosomes into cultured mammalian cells. BioTechniques 35, 796–807.

    CAS  PubMed  Google Scholar 

  3. Montigny, W. J., Houchens, C. R., Illenye, S., et al. (2001) Condensation by DNA looping facilitates transfer of large DNA molecules into mammalian cells. Nucleic Acids Res. 29, 1982–1988.

    Article  CAS  PubMed  Google Scholar 

  4. Gama, S. M., De Gasperi, R., Wen, P. H., et al. (2002) BAC and PAC DNA for the generation of transgenic animals. BioTechniques 33, 51–53.

    PubMed  Google Scholar 

  5. Lawrence, M. J. (1994) Surfactant systems: microemulsions and vesicles as vehicles for drug delivery. Eur. J. Drug Metab. Pharmacokinet. 19, 257–269.

    Article  CAS  PubMed  Google Scholar 

  6. Oberle, V., Bakowsky, U., Zuhorn, I. S., and Hoeskstra, D. (2000) Lipoplex formation under equilibrium conditions reveals a three-step mechanism. Biophys. J. 79, 1447–1454.

    Article  CAS  PubMed  Google Scholar 

  7. Almofti, M. R., Harashima, H., Shinohara, Y., Almofti, A., Baba, Y., and Kiwada, H. (2003) Cationic liposome-mediated gene delivery: biophysical study and mechanism of internalization. Arch. Biochem. Biophys. 410, 246–253.

    Article  PubMed  Google Scholar 

  8. Coonrod, A., Li, F. Q., and Horwitz, M. (1997) On the mechanism of DNA transfection: efficient gene transfer without viruses. Gene Ther. 4, 1313–1321.

    Article  CAS  PubMed  Google Scholar 

  9. Illenye, S. and Heintz, N. H. (2004) Functional analysis of bacterial artificial chromosomes in mammalian cells: mouse Cdc6 is associated with the mitotic spindle apparatus. Genomics 83, 66–75.

    Article  CAS  PubMed  Google Scholar 

  10. Heinzel, S. S., Krysan, P. J., Tran, C. T., and Calos, M. P. (1991) Autonomous DNA replication in human cells is affected by the size and the source of the DNA. Mol. Cell Biol. 11, 2263–2272.

    CAS  PubMed  Google Scholar 

  11. Tseng, W. C., Haselton, F. R., and Giorgio, T. D. (1999) Mitosis enhances transgene expression of plasmid delivered by cationic liposomes. Biochim. Biophys. Acta 1445, 53–64.

    CAS  PubMed  Google Scholar 

  12. Houchens, C. R., Montigney, W. J., Zeltser, L., Dailey, L., Gilbert, J. M., and Heintz, N. H. (2000) The dfhr oriβ-binding protein RIP60 contains 15 zinc fingers: DNA binding and looping by the central three fingers and an associated proline-rich region. Nucleic Acids Res. 28, 570–581.

    Article  CAS  PubMed  Google Scholar 

  13. Urlaub, G. and Chasin, L. A. (1980) Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc. Natl. Acad. Sci. USA. 77, 4216–4220.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Phelps, S.F., Illenye, S., Heintz, N.H. (2007). Manipulating Genes and Gene Copy Number by Bacterial Artificial Chromosome Transfection. In: Fisher, P.B. (eds) Cancer Genomics and Proteomics. Methods in Molecularbiologyâ„¢, vol 383. Humana Press. https://doi.org/10.1007/978-1-59745-335-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-335-6_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-504-0

  • Online ISBN: 978-1-59745-335-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics