Skip to main content

Nuclear Reprogramming

An Overview

  • Protocol
Nuclear Transfer Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 348))

  • 895 Accesses

Abstract

Nuclear reprogramming is an intriguing phenomenon, in which specialized somatic cells reacquire pluripotency through the global resetting of epigenetic modifications without changes occurring to their nuclear DNA information. The nuclear reprogramming activity retained by unfertilized eggs and embryonic stem cells is readily observable through the techniques of nuclear transplantation and cell fusion, respectively. Furthermore, researches involving somatic stem cells have provided evidence that spontaneous cell fusion functions, at least in part, in maintaining the homeostasis of various tissues through the generation of replacement cells in vivo. Novel approaches by application of the nuclear reprogramming activity may open new avenues producing genetically matched personalized pluripotential stem cells derived from patient somatic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avery, O. T., MacLeod, C. M., and MacCarty, M. (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med. 79, 137–158.

    Article  CAS  PubMed  Google Scholar 

  2. Watson, J. D., and Crick, F. H. C. (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738.

    Article  CAS  PubMed  Google Scholar 

  3. Gurdon, J. (1962) The developmental capacity of nuclei taken from intestinal epithelial cells of feeding tadpoles. J. Ernbryol. Exp. Morphol. 10, 622–640.

    CAS  Google Scholar 

  4. DiBerardino, M. A., Orr, N. H., and McKinnell, R. G. (1986) Feeding tadpoles cloned from Rana erythrocyte nuclei. Proc. Natl. Acad. Sci. USA 83, 8231–8234.

    Article  CAS  PubMed  Google Scholar 

  5. Wilmut, L, Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. S. (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.

    Article  CAS  PubMed  Google Scholar 

  6. Meng, L., Ely, J. J., Stouffer, R. L., and Wolf, D. P. (1997) Rhesus monkeys produced by nuclear transfer. Biol. Reprod. 57, 454–459.

    Article  CAS  PubMed  Google Scholar 

  7. Kato, Y., Tani, T., Sotomaru, Y., et al. (1998) Eight calves cloned from somatic cells of a single adult. Science 282, 2095–2098.

    Article  CAS  PubMed  Google Scholar 

  8. Wakayama, T., Perry, A. F. C., Zuccotti, M., Johnson, K. R., and Yanagimachi, R. (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.

    Article  CAS  PubMed  Google Scholar 

  9. Onishi, A., Iwamoto, M., Akita, T., et al. (2000) Pig cloning by microinjection of fetal fibroblast nuclei. Science 289, 1188–1190.

    Article  CAS  PubMed  Google Scholar 

  10. Chesne, P., Adenot, P. G., Viglietta, C., Baratte, M., Boulanger, L., and Renard, J. P. (2002) Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat. Biotechnol. 20, 366–369.

    Article  CAS  PubMed  Google Scholar 

  11. Holden, C. (2002) Cloning. Carbon-copy clone is the real thing. Science 295, 1443–1444.

    Article  CAS  PubMed  Google Scholar 

  12. Tsunoda, Y., and Kato, Y. (2002) Recent progress and problems in animal cloning. Differentiation 69, 158–161.

    Article  CAS  PubMed  Google Scholar 

  13. Ogura, A., Inoue, K., Ogonuki, N., Lee, J., Kohda, T., and Ishino, F. (2002) Phenotypic effects of somatic cell cloning in the mouse. Cloning Stem Cells 4, 397–405.

    Article  CAS  PubMed  Google Scholar 

  14. Humpherys, D., Eggan, K., Akutsu, H., et al. (2002) Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc. Natl. Acad. Sci. USA 99, 12889–12894.

    Article  CAS  PubMed  Google Scholar 

  15. Blau, H. M., Pavlath, G. K., Hardeman, E. C., et al. (1985) Plasticity of the differentiated state. Science 230, 758–766.

    Article  CAS  PubMed  Google Scholar 

  16. Baron, M. H. and Maniatis, T. (1986) Rapid reprogramming of globin gene expression in transient heterokaryons. Cell 46, 591–602.

    Article  CAS  PubMed  Google Scholar 

  17. Blau, H. M. and Baltimore, D. (1991). Differentiation requires continuous regulation. J Cell Biol. 112, 781–783.

    Article  CAS  PubMed  Google Scholar 

  18. Tada, M., Takahama, Y., Abe, K., Nakatsuji, N., and Tada, T. (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 11, 1553–1558.

    Article  CAS  PubMed  Google Scholar 

  19. Tada, M., Morizane, A., Kimura, H., et al. (2003) Pluripotency of the reprogrammed somatic genomes in ES hybrid cells. Dev. Dyn. 227, 504–510.

    Article  CAS  PubMed  Google Scholar 

  20. Kimura, H., Tada, M., Hatano, S., Yamazaki, M., Nakatsuji, N., and Tada, T. (2003) Chromatin reprogramming of male somatic cell-derived Xist and Tsix in ES hybrid cells. Cytogenet. Genome Res. 99-, 106–114.

    Article  Google Scholar 

  21. Matsui, Y., Zsebo, K., and Hogan, B. L. (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847.

    Article  CAS  PubMed  Google Scholar 

  22. Resnick, J. L., Bixler, L. S., Cheng, L., and Donovan, P. (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550–551.

    Article  CAS  PubMed  Google Scholar 

  23. Tada, T., Tada, M., Hilton, K., et al. (1998) Epigenotype switching of imprintable loci in embryonic germ cells. Dev. Gene Evol. 207, 551–561.

    Article  CAS  Google Scholar 

  24. Tada, M., Tada, T., Lefebvre, L., Barton, S. C., and Surani, M. A. (1997) Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 16, 6510–6520.

    Article  CAS  PubMed  Google Scholar 

  25. Hakelien, A. M., Landsverk, H. B., Robl, J. M., Skalhegg, B. S., and Collas, P. (2002) Reprogramming fibroblasts to express T-cell functions using cell extracts. Nat. Biotechnol. 20, 460–466.

    Article  CAS  PubMed  Google Scholar 

  26. Temple, S. and Alvarez-Buylla, A. (1999) Stem cells in the adult mammalian central nervous system. Curr. Opin. Neurobiol. 9, 135–141.

    Article  CAS  PubMed  Google Scholar 

  27. Momma, S., Johansson, C. B., and Frisen, J. (2000) Get to know your stem cells. Curr. Opin. Neurobiol. 10, 45–49.

    Article  CAS  PubMed  Google Scholar 

  28. Clarke, D. L., Johansson, C. B., Wilbertz, J., et al. (2000) Generalized potential of adult neural stem cells. Science 288, 1660–1663.

    Article  CAS  PubMed  Google Scholar 

  29. Ying, Q. L., Nichols, J., Evans, E. P., and Smith, A. G. (2002) Changing potency by spontaneous fusion. Nature 416, 545–548.

    Article  CAS  PubMed  Google Scholar 

  30. Terada, N., Hamazaki, T., Oka, M., et al. (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545.

    Article  CAS  PubMed  Google Scholar 

  31. Vassilopoulos, G., Wang, P. R., and Russell, D. W. (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901–904.

    Article  CAS  PubMed  Google Scholar 

  32. Wang, X., Willenbring, H., Akkari, Y., et al. (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901.

    Article  CAS  PubMed  Google Scholar 

  33. Thomson, J. A., Kalishman, J., Golos, T. G., et al. (1995) Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA 92, 7844–7848.

    Article  CAS  PubMed  Google Scholar 

  34. Thomson, J. A., Kalishman, J., Golos, T. G., Durning, M., Harris, C. P., and Hearn, J. P. (1996) Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol. Reprod. 55, 254–259.

    Article  CAS  PubMed  Google Scholar 

  35. Suemori, H., Tada, T., Torii, R., et al. (2001) Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI. Dev. Dyn. 222, 273–279.

    Article  CAS  PubMed  Google Scholar 

  36. Amit, M., Carpenter, M. K., Inokuma, M. S., et al. (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278.

    Article  CAS  PubMed  Google Scholar 

  37. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  38. Munsie, M. J., Michalska, A. E., O’Brien, C. M., Trounson, A. O., Pera, M. F., and Mountford, P. S. (2000) Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr. Biol. 10, 989–992.

    Article  CAS  PubMed  Google Scholar 

  39. Kawase, E., Yamazaki, Y., Yagi, T., Yanagimachi, R., and Pedersen, R. A. (2000) Mouse embryonic stem (ES) cell lines established from neuronal cell-derived cloned blastocysts. Genesis 28, 156–163.

    Article  CAS  PubMed  Google Scholar 

  40. Rideout, W. M., 3rd, Hochedlinger, K., Kyba, M., Daley, G. Q., and Jaenisch, R. (2002) Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109, 17–27.

    Article  CAS  PubMed  Google Scholar 

  41. Weissman, I. L. (2002) Stem cells—scientific, medical, and political issues. N. Engl. J. Med. 346, 1576–1579.

    Article  PubMed  Google Scholar 

  42. Hubner, K., Fuhrmann, G., Christenson, L. K., et al. (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251–1256.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Tada, T. (2006). Nuclear Reprogramming. In: Verma, P.J., Trounson, A.O. (eds) Nuclear Transfer Protocols. Methods in Molecular Biology™, vol 348. Humana Press. https://doi.org/10.1007/978-1-59745-154-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-154-3_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-280-3

  • Online ISBN: 978-1-59745-154-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics