Skip to main content

Nuclear Transfer in Nonhuman Primates

  • Protocol
Nuclear Transfer Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 348))

Abstract

The nonhuman primate is a highly relevant model for the study of human diseases, and currently there is a significant need for populations of animals with specific genotypes that can not be satisfied by the capture of animals from the wild or by conventional breeding. There is an even greater need for genetically identical animals in vaccine development or tissue transplantation research, where immune system function is under study. Efficient somatic cell nuclear transfer (SCNT) procedures could provide a source for genetically identical nonhuman primates for biomedical research. SCNT offers the possibility of cloning animals using cultured cells and potentially provides an alternative approach for the genetic modification of primates. The opportunity to introduce precise genetic modifications into cultured cells by gene targeting procedures, and then use these cells as nuclear donors in SCNT, has potential application in the production of loss-of-function monkey models of human diseases. We were initially successful in producing monkeys by NT using embryonic blastomeres as the source of donor nuclei and have repeated that success. However, when somatic cells are used as nuclear donor cells, the developmental potential of monkey SCNT embryos is limited, and somatic cell cloning has not yet been accomplished in primates. High rates of in vitro development to blastocysts, comparable with in vitro fertilization controls, and successful production of rhesus monkeys by NT from embryonic blastomeres suggests that basic cloning procedures, including enucleation, fusion, and activation, are consistent with the production of viable embryos. Although modifications or additional steps in SCNT are clearly warranted, the basic procedures will likely be similar to those extant for embryonic cell NT. In this chapter, we describe detailed protocols for rhesus macaque embryonic cell NT, including oocyte and embryo production, micromanipulation, and embryo transfer in nonhuman primates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Meng, L., Ely, J. J., Stouffer, R. L., and Wolf, D. P. (1997) Rhesus monkeys produced by nuclear transfer. Biol Reprod. 57, 454–459.

    Article  CAS  PubMed  Google Scholar 

  2. Mitalipov, S. M., Yeoman, R. R., Nusser, K. D., and Wolf, D. P. (2002) Rhesus monkey embryos produced by nuclear transfer from embryonic blastomeres or somatic cells. Biol. Reprod. 66, 1367–1373.

    Article  CAS  PubMed  Google Scholar 

  3. Ouhibi, N., Zelinski-Wooten, M. B., Thomson, J. A., and Wolf, D. P. (2001) Assisted fertilization and nuclear transfer in nonhuman primates, in Assisted fertilization and nuclear transfer in mammals. Contemporary Endocrinology Series (Wolf, D. P., Zelinski-Wooten, M. B. eds.), Humana, Totowa, NJ, pp. 253–284.

    Google Scholar 

  4. Mitalipov, S. M., Kuo, H. C., Hennebold, J. D., and Wolf, D. P. (2003) Oct-4 expression in pluripotent cells of the rhesus monkey. Biol. Reprod. 69, 1785–1792.

    Article  CAS  PubMed  Google Scholar 

  5. Narita, J., Takada, T., Kimura, H., Terao, K., Sakuragawa, N., and Torii, R. (2003) Cynomolgus monkey blastocyst produced by nuclear transfer using amniotic epithelial cells. Theriogenology 59, 276.

    Google Scholar 

  6. Bavister, B. D., Boatman, D. E., Collins, K., Dierschke, D. J., and Eisele, S. G. (1984) Birth of rhesus monkey infant after in vitro fertilization and nonsurgical embryo transfer. Proc. Natl. Acad. Sci. USA. 81, 2218–2222.

    Article  CAS  PubMed  Google Scholar 

  7. McKiernan, S. H., and Bavister, B. D. (2000) Culture of one-cell hamster embryos with water soluble vitamins: pantothenate stimulates blastocyst production. Hum Reprod. 15, 157–164.

    Article  CAS  PubMed  Google Scholar 

  8. Zelinski-Wooten, M. B., Hutchison, J. S., Hess, D. L., Wolf, D. P., and Stouffer, R. L. (1995) Follicle stimulating hormone alone supports follicle growth and oocyte development in gonadotrophin-releasing hormone antagonist-treated monkeys. Hum. Reprod. 10, 1658–1666.

    CAS  PubMed  Google Scholar 

  9. Wolf, D. P., Alexander, M., Zelinski-Wooten, M., and Stouffer, R. L. (1996) Maturity and fertility of rhesus monkey oocytes collected at different intervals after an ovulatory stimulus (human chorionic gonadotropin) in vitro fertilization cycles. Mol. Reprod. Dev. 43, 76–81.

    Article  CAS  PubMed  Google Scholar 

  10. Lanzendorf, S. E., Gliessman, P. M., Archibong, A. E., Alexander, M., and Wolf, D. P. (1990) Collection and quality of rhesus monkey semen. Mol. Reprod. Dev. 25, 61–66.

    Article  CAS  PubMed  Google Scholar 

  11. Loi, P., Clinton, M., Barboni, B., et al. (2002) Nuclei of nonviable ovine somatic cells develop into lambs after nuclear transplantation. Biol. Reprod. 67, 126–132.

    Article  CAS  PubMed  Google Scholar 

  12. Nusser, K. D., Mitalipov, S., Widmann, A., Gerami-Naini, B., Yeoman, R. R., and Wolf, D. P. (2001) Developmental competence of oocytes after, I. C.SI in the rhesus monkey. Hum. Reprod. 16, 130–137.

    Article  CAS  PubMed  Google Scholar 

  13. Yeoman, R. R., Gerami-Naini, B., Mitalipov, S. M., Nusser, K. D., Widmann, A. A., and Wolf, D. P. (2002) Reduced fertilization after, I. C.SI with frozen/thawed sperm in rhesus macaques. Biol. Reprod. 62(Suppl 1), 319.

    Google Scholar 

  14. Mitalipov, S. M., Yeoman, R. R., Kuo, H. C., et al. (2002) Extended incubation of rhesus monkey cryopreserved sperm post thaw results in improved fertilization rates after, I. C.SI. Fertil. Steril. 78(Suppl 1), 15.

    Article  Google Scholar 

  15. Wolf, D. P., Thormahlen, S., Ramsey, C., Yeoman, R., Fanton, J., and Mitalipov, S. (2004) Use of assisted reproductive technologies in the propagation of rhesus macaque offspring. Biol Reprod. 71, 486–493.

    Article  CAS  PubMed  Google Scholar 

  16. Susko-Parrish, J. L., Leibfried-Rutledge, M. L., Northey, D. L., Schutzkus, V., and First, N. L. (1994) Inhibition of protein kinases after an induced calcium transient causes transition of bovine oocytes to embryonic cycles without meiotic completion. Dev Biol. 166, 729–739.

    Article  CAS  PubMed  Google Scholar 

  17. Mitalipov, S. M., Nusser, K. D., and Wolf, D. P. (2001) Parthenogenetic activation of rhesus monkey oocytes and reconstructed embryos. Biol. Reprod. 65, 253–259.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Mitalipov, S.M., Wolf, D.P. (2006). Nuclear Transfer in Nonhuman Primates. In: Verma, P.J., Trounson, A.O. (eds) Nuclear Transfer Protocols. Methods in Molecular Biology™, vol 348. Humana Press. https://doi.org/10.1007/978-1-59745-154-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-154-3_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-280-3

  • Online ISBN: 978-1-59745-154-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics