Skip to main content

Origin and Progress of Nuclear Transfer in Nonmammalian Animals

  • Protocol
Nuclear Transfer Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 348))

Abstract

This chapter traces the orgin and progress of nuclear transfer that later became the paradigm for cloning animals. Classic studies in cytology, embryology, or genetics spanning more than five centuries that led to nuclear transfers in unicellular animals and to those in oocytes of insects, fish and amphibians are reviewed. The impetus for the development of successful nuclear transfers in amphibian oocytes in 1952 was to determine whether or not differentiated somatic cell nuclei are developmentally equivalent to zygote nuclei. Experiments in amphibians demonstrated several important results: (1) specialized somatic cell nuclei are extensively multipotent; (2) fertile adult amphibians can be cloned from embryonic and larval nuclei; (3) serial cloning expands the number of clones; (4) transplanting nuclei into oocyte cytoplasm induces reprogramming of their gene function; and (5) amphibian cloning became the model for cloning mammals. Subsequent studies in mice, a more technically favorable species, revealed that specialized cell nuclei are equivalent to zygote nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Briggs, R. and King, T. J. (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc. Natl. Acad. Sci. USA 38, 455–463.

    CAS  PubMed  Google Scholar 

  2. Moore, J. A. (1993) Science as a Way Of Knowing The Foundations of Modern Biology. Harvard University Press, Cambridge, MA.

    Google Scholar 

  3. Wilson, E. B. (1925) The Cell in Development and Heredity. The Macmillan Co., New York.

    Google Scholar 

  4. Gilbert, S. F. (2000) Developmental Biology, Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  5. Di Berardino, M.A. (1997) Genomic Potential of Differentiated Cells, Columbia University Press, New York.

    Google Scholar 

  6. Korzh, V. and Strähle, U. (2002) Marshall Barber and the century of microinjection: from cloning of bacteria to cloning of everything. Differentiation 70, 221–226.

    PubMed  Google Scholar 

  7. Spemann, H. (1938) Embryonic Development and Induction, Hafner Publishing Co., New York City, New York.

    Google Scholar 

  8. Yan, S. (1998). Cloning in Fish, Nucleocytoplasmic Hybrids, International Union of Biological Sciences Educational and Cultural Press, HongKong.

    Google Scholar 

  9. Gurdon, J. B. (1961) The transplantation of nuclei between two subspecies of Xenopus laevis. Heredity 16, 305–315.

    Google Scholar 

  10. McKinnell, R. G. (1962) Intraspecific nuclear transplantation in frogs. J. Hered. 59, 199–207.

    Google Scholar 

  11. Gurdon, J. B. and Uehlinger, V. (1966) “Fertile” intestine nuclei. Nature 210, 1240–1241.

    CAS  PubMed  Google Scholar 

  12. Illmensee, K. (1973) The potentialities of transplanted early gastrula nuclei of Drosophila melanogaster. Production of their imago descendants by germ-line transplantation. Wilhelm Roux Arch. Entwicklungsmechanik Org. 171, 331–343

    Google Scholar 

  13. Zalokar, M (1973) Transplantation of nuclei into polar plasm of Drosophila eggs. Dev. Biol. 32, 189–193.

    CAS  PubMed  Google Scholar 

  14. Di Berardino, M. A., Orr, N. H., and McKinnell, R. G. (1986) Feeding tadpoles cloned from Rana erythrocyte nuclei. Proc. Natl. Acad. Sci. USA 83, 8231–8234.

    Google Scholar 

  15. Willadsen, S. M. (1986) Nuclear transplantation in sheep embryos. Nature 320, 63–65.

    CAS  PubMed  Google Scholar 

  16. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H.S. (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.

    CAS  PubMed  Google Scholar 

  17. Schnieke, A. E., Kind, A. J., Ritchie, W. A., et al. (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278, 2130–2133.

    CAS  PubMed  Google Scholar 

  18. Wakayama, T., Perry, A. C.F., Zuccotti, M., Johnson, K. R., and Yanagimachi, R. (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.

    CAS  PubMed  Google Scholar 

  19. McCreath, K. J., Howcroft, J., Campbell, K. H. S., Coleman, A., Schnieke, A. E., and Kind, A. J. (2002) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405, 1066–1069.

    Google Scholar 

  20. Hochedlinger, K. and Jaenisch, R. (2002) Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–1038.

    CAS  PubMed  Google Scholar 

  21. Tarkowski, A. K. (1959) Experimental studies on regulation in the development of isolated blastomeres of mouse eggs. Acta Theriol. 3, 191–267.

    Google Scholar 

  22. Seidel, F. (1952) Die Entwicklungspotenzen einer isolierten Blastomere des Zweizellstadiums im Säugetierei. Naturwissenschaften 39, 355–356.

    Google Scholar 

  23. Willadsen, S. M. (1987) Toward cloning of domestic animals, in Future Aspects in Human in Vitro Fertilization (Freichtinger, W. and Kemeter, P., ed.), Springer-Verlag, Heidelberg.

    Google Scholar 

  24. Moore, N. W., Adams, C. E., and Rowson, L. E. A. (1968) Developmental potential of single blastomeres of the rabbit egg. J. Reprod. Fertil. 17, 527–531.

    CAS  PubMed  Google Scholar 

  25. Tarkowski, A. K. (1961) Mouse chimeras developed from fused eggs. Nature 190, 857–860.

    CAS  PubMed  Google Scholar 

  26. Mintz, B. (1962) Formation of genotypically mosaic mouse embryos. Am. Zool. 2, 432.

    Google Scholar 

  27. Gardner, R. L. (1968) Mouse chimaeras obtained by the injection of cells into the blastocyst. Nature 220, 596–597.

    CAS  PubMed  Google Scholar 

  28. Markert, C. L. and Petters, R. M. (1978) Manufactured hexaparental mice show that adults are derived from three embryonic cells. Science 202, 56–58.

    CAS  PubMed  Google Scholar 

  29. Moustafa, L. A. and Brinster, R. L. (1972) Induced chimaerism by transplanting embryonic cells into mouse blastocysts. J. Exp. Zool. 181, 193–202.

    CAS  PubMed  Google Scholar 

  30. Willadsen, S. M., Lehn-Jensen, H., Fehilly, C. B., and Newcomb, R. (1981). The production of monozygotic twins of preselected parentage by micromanipulation of non-surgically collected cow embryos. Theriogeneology 29, 23–29.

    Google Scholar 

  31. Ozil, J. P., Heyman, Y. and Renard, J.P. (1982). Production of monozygotic twins by micromanipulation and cervical transfer in the cow. Vet. Rec. 110, 126–127.

    CAS  PubMed  Google Scholar 

  32. Beetschen, J. C. and Fischer, J. L. (2004) Yves Delage (1854–1920) as a forerunner of modern nuclear transfer experiments. Int. J. Dev. Biol. 48(7), 607–612.

    PubMed  Google Scholar 

  33. Fankhauser, G. (1930) Zytologische Untersuchungen an geschnürten Triton-Eiern. 1. Die verzögerte Kernversorgung einer Hälfte nach hantelförmiger Einschnürung des Eies. Roux’s Arch. 122, 116–139.

    Google Scholar 

  34. Tartar, V (1941) Intracellular patterns: facts and principles concerning patterns exhibited in the morphogenesis and regeneration of ciliate protozoa. Growth Suppl. 5, 21–40.

    CAS  Google Scholar 

  35. De Terra, N. (1967) Macronuclear DNA synthesis in Stentor: regulation by a cytoplasmic initiator. Proc. Natl. Acad. Sci. USA 57, 607–614.

    PubMed  Google Scholar 

  36. Chau, M. F. and Ng. S. F. (1988) Interspecific micronuclear transplantation in Paramecium: nucleogenesis and stomatogenesis in asexual and sexual reproduction. Development 103, 179–191.

    Google Scholar 

  37. Wilson, J. F. (1963) Transplantation of nuclei in Neurospora crassa. Am. J. Botany 50, 890–786.

    Google Scholar 

  38. Patterson, E. K. (n. d.) Growth—The Early History of a Cancer Research Institute, 1927–1957. Talbot Research Library, Fox Chase Cancer Center and The American Philosophical Society, Philadelphia, PA.

    Google Scholar 

  39. Rostand, J. (1943) Essai d’inoculation de noyaux embryonnaires dans l’oeuf vierge de grenouille. Parthenogénese ou fécondation? Rev. Sci. 81, 454–456.

    Google Scholar 

  40. Lopashov, G. V. (1945). Experimental study on potencies of nuclei from newt blastulae by means of transplantation. Ref. Rab. Biol. Otd. Akad. Nauk. USSR 88–89.

    Google Scholar 

  41. Briggs, R, Green, E. U., and King, T. J. (1951) An investigation of the capacity for cleavage and differentiation in Rana pipiens eggs lacking “functional” chromosomes. J. Exp. Zool. 116, 455–500.

    CAS  PubMed  Google Scholar 

  42. Porter, K. R. (1939) Androgenetic development of the egg of Rana pipiens. Biol. Bull. Woods Hole 77, 233–257.

    Google Scholar 

  43. Subtelny, S. (1958) The development of haploid and homozygous diploid frog embryos obtained from transplantation of haploid nuclei. J. Exp. Zool 139, 263–306.

    CAS  PubMed  Google Scholar 

  44. Hennen, S. (1967) Nuclear transplantation studies of nucleocytoplasmic interactions in amphibian hybrids, in The Control of Nuclear Activity (Goldstein, L., ed.), Prentice-Hall, Englewood Cliffs, NJ,.353–375.

    Google Scholar 

  45. Subtelny, S. (1974) Nucleocytoplasmic interactions in development of amphibian hybrids. Int. Rev. Cytol. 39, 35–88.

    CAS  PubMed  Google Scholar 

  46. Gallien, C. L. (1979) Expression of nuclear and cytoplasmic factors in ontogenesis of amphibian nucleocytoplasmic hybrids. Int. Rev. Cytol. Suppl. 9, 189–219.

    Google Scholar 

  47. McKinnell, R. G., Lust, J. M., Sauerbier, W., et al. (1993) Genomic plasticity of the Lucké renal carcinoma: a review. Int. J. Dev. Biol. 37, 213–219.

    CAS  PubMed  Google Scholar 

  48. Orr Hoffner, N., Di Berardino, M. A., and McKinnell, R. G. (1986) The genome of frog erythrocytes displays centuplicate replications. Proc. Natl. Acad. Sci. USA 83, 1369–1273.

    Google Scholar 

  49. Lanza, R. P., Cibelli, J. B., Blackwell, C., et al. (2000) Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science 288, 665–670.

    CAS  PubMed  Google Scholar 

  50. Gurdon, J. B. (1999) Genetic reprogramming following nuclear transplantation in Amphibia. Cell Dev Biol. 10, 239–243.

    CAS  Google Scholar 

  51. McGrath, J. and Solter, D. (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183.

    CAS  PubMed  Google Scholar 

  52. Surani, M. A. H., Barton, S. C., and Norris, M. L. (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during embryogenesis. Nature 308, 548–550.

    CAS  PubMed  Google Scholar 

  53. Sambuichi, H. (1957) The roles of the nucleus and the cytoplasm in development. I. An intersubspecific hybrid frog, developed from a combination of Rana nigromaculata nigromagulata cytoplasm and a diploid nucleus of Rana nigromaculata brevipoda. J. Sci. Hiroshima Univ. Ser. B Div. 1 17, 33–41.

    Google Scholar 

  54. Moore, J. A. (1958) Nuclear transfer of embryonic cells of the Amphibia, in New Approaches in Cell Biology (Walker, P. M. B., ed.), Academic Press, London, pp. 1–14.

    Google Scholar 

  55. Fischberg, M., Gurdon, J. B., and Elsdale, T. R. (1958) Nuclear transplantation in Xenopus laevis. Nature 181, 424.

    Google Scholar 

  56. Gurdon, J. B., Elsdale, T. R., and Fischberg, M. (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182, 64–65.

    CAS  PubMed  Google Scholar 

  57. Signoret, J. Briggs, R., and Humphrey, R.R. (1962) Nuclear transplantation in the axolotl. Dev. Biol. 4, 134–164.

    CAS  PubMed  Google Scholar 

  58. Signoret, J., and Picheral, B. (1962). Transplantation de noyaux chex Pleuordeles waltlii Michah. Comptes rendus des séances de l’Académie des Sciences 254, 1150–1151.

    CAS  Google Scholar 

  59. Briggs, R. Signoret, J., and Humphrey, R. R. (1964) Transplantation of nuclei of various cell types from neurulae of the Mexican axolotl (Ambystoma mexicanum). Dev. Biol. 10, 233–246.

    CAS  PubMed  Google Scholar 

  60. Kawamura, T., Nishioka, M., and Myorei, Y. (1963) Reproductive capacity of autotetraploid males in brown frogs. J. Sci. Hiroshima Univ. Ser. B, Div. 1 21, 15–24.

    Google Scholar 

  61. Signoret, J. (1965) Transplantations nucléaries et différenciation embryonnaire. Arch. Biol. 76, 591–606.

    CAS  Google Scholar 

  62. Aimar, C. (1972) Analyse par la greffe nucléaire des propriétés morphogéné tiques des noyaux embryonnaires chez Pleurodeles waltlii (Amphibien Urodèle). Application à l’é tude de la gémellarité expérimentale. Ann. Embryol. Morphogen. 5, 5–42.

    Google Scholar 

  63. King, T. J. and Briggs, R. (1956) Serial transplantation of embryonic nuclei. Cold Spring Harbor Symp. Quant. Biol. 21, 271–290.

    CAS  PubMed  Google Scholar 

  64. Brun, R. and Kobel, H. R. (1972) Des grenouilles métamorphosée obtenues par transplantation nucléaire à partir du prosencéphale et de l’épiderme larvaire de Xenopus laevis. Rev. Suisse de Zool. 79, 961–965.

    Google Scholar 

  65. Kobel, H. R., Brun, R. B., and Fischberg, M. (1973) Nuclear transplantation with melanophores, ciliated epidermal cells, and the established cell-line A-8 in Xenopus laevis. J. Embryol. Exp. Morphol. 29, 539–547.

    CAS  PubMed  Google Scholar 

  66. Gurdon, J. B. (1962) Adult frogs derived from the nuclei of single somatic cells. Dev. Biol. 4, 256–273.

    CAS  PubMed  Google Scholar 

  67. Byrne, J. A., Simonsson, S., and Gurdon, J.B. (2002) From intestine to muscle: Nuclear reprogramming through defective cloned embryos. Proc. Natl. Acad. Sci. USA 99, 6059–6063.

    CAS  PubMed  Google Scholar 

  68. Marshall, J. A. and Dixon, K. E. (1977) Nuclear transplantation from intestinal epithelial cells of early and late Xenopus laevis tadpoles. J. Embryol. Exp. Morphol. 40, 167–174.

    CAS  PubMed  Google Scholar 

  69. Gurdon, J. B. and Laskey, R. A. (1970) The transplantation of nuclei from single cultured cells into enucleate frogs’ eggs. J. Embryol. Exp. Morphol. 34, 93–112.

    Google Scholar 

  70. Gurdon, J. B., Laskey, R. A., and Reeves, O. R. (1975) The developmental capacity of nuclei transplanted from keratinized skin cells of adult frogs. J. Embryol. Exp. Morphol. 34, 93–112.

    CAS  PubMed  Google Scholar 

  71. Wabl, M. R., Brun, R. B., and Du Pasquier, L. (1975). Lymphocytes of the toad Xenopus laevis have the gene set for promoting tadpole development. Science 190, 1310–1312.

    CAS  PubMed  Google Scholar 

  72. Brun, R. (1978) Developmental capacities of Xenopus eggs, provided with erythrocyte or erythroblast nuclei from adults. Develop. Biol. 65, 271–284.

    CAS  PubMed  Google Scholar 

  73. Di Berardino, M. A. and Orr, N. H. (1992) Genomic potential of erythroid and leukocytic cells of Rana pipiens analyzed by nuclear transfer into diplotene and maturing oocytes. Differentiation 50, 1–13.

    PubMed  Google Scholar 

  74. Di Berardino, M. A. and Hoffner, N. J. (1983) Gene reactivation in erythrocytes: nuclear transplantation in oocytes and eggs of Rana. Science 219, 862–864.

    Google Scholar 

  75. Vignon, X., Zhou, Q., and Renard, J-P. (2002). Chromatin as a regulative architecture of the early developmental functions of mammalian embryos after fertilization or nuclear transfer. Cloning Stem Cells 4, 363–377.

    CAS  PubMed  Google Scholar 

  76. Hochedlinger, K. and Jaenisch, R. (2002) Nuclear transplantation: lessons from frogs and mice. Curr. Opinion Cell Biol. 14, 741–748.

    CAS  PubMed  Google Scholar 

  77. Nagy, A., Rossant, J., Nagy. R., Abramow-Newerly, W., and Roder, J. C. (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428.

    CAS  PubMed  Google Scholar 

  78. Wakayama, T., Rodriguez, I, Perry, A. C. F., Yanagimachi, R., and Mombaerts, P. (1999) Mice cloned from embryonic stem cells. Proc. Natl. Acad. Sci. USA 96, 14984–14989.

    CAS  PubMed  Google Scholar 

  79. Subtelny, S. (1965) On the nature of the restricted differentiation-promoting ability of transplanted Rana pipiens nuclei from differentiating endoderm cells. J. Exp. Zool. 159, 59–92.

    CAS  PubMed  Google Scholar 

  80. Briggs, R., King, T. J., and Di Berardino, M. A. (1961) Development of nucleartransplant embryos of known chromosome complement following parabiosis with normal embryos, in Symposium on the Germ Cells and Earliest Stages of Development, Fondazione A. Baselli, Milano, Italy, pp. 441–477.

    Google Scholar 

  81. Subtelny, S. (1965) Single transfers of nuclei from differentiating endoderm cells into enucleated and nucleate Rana pipiens eggs. J. Exp. Zool. 159, 47–58.

    CAS  PubMed  Google Scholar 

  82. Di Berardino, M. A. and King, T. J. (1967) Development and cellular differentiation of neural nuclear-transplants of known karyotype. Dev. Biol. 15, 102–128.

    PubMed  Google Scholar 

  83. Di Berardino, M. A. and Hoffner, N. (1970) Origin of chromosomal abnormalities in nuclear-transplants—A reevaluation of nuclear differentiation and nuclear equivalence in amphibians. Dev. Biol. 22, 185–209.

    Google Scholar 

  84. Di Berardino, M. A. (1979) Nuclear and chromosomal behavior in amphibian nuclear transplants. Int. Rev. Cytol. Suppl 9, 129–160.

    Google Scholar 

  85. Humphreys, D., Eggan, K., Akutsu, H., et al. (2002) Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc. Natl. Acad. Sci. USA 99, 12889–12984.

    Google Scholar 

  86. Gao, S., Chung, Y. G., Williams, J. W., Riley, J. Moley, K., and Latham, K. E. (2003) Somatic cell-like features of cloned mouse embryos prepared with cultures myoblast nuclei. Biol. Reprod. 69, 48–56.

    CAS  PubMed  Google Scholar 

  87. Booth, P. J., Viuff, D., Tan, S., Holm, P., Greve, T., and Callesen, H. (2002) Numerical chromosome errors in day 7 somatic nuclear transfer bovine blastocysts. Biol. Reprod. 68, 922–928.

    Google Scholar 

  88. Brachet, A. (1922) Recherches sur la fécondation prématurée de l’oeuf d’oursin (Paracentrotus lividus). Arch. Biol. 32, 205–244.

    Google Scholar 

  89. Battaillon, E. and Tchou-Su (1934) L’analyse expérimentale de la fécondation et sa dé finition par les processus cinétiques. Ann. Sci. Nat. Zool. Biol. Anim. 17, 9–36.

    Google Scholar 

  90. Gurdon, J. B. (1960) The effects of ultraviolet irradiation on uncleaved eggs of Xenopus laevis. Quart. J. Micros. Sci. 101, 299–311.

    Google Scholar 

  91. Subtelny, S. and Bradt, C. (1963) Cytological observations on the early developmental stages of activated Rana pipiens eggs receiving a transplanted blastula nucleus. J. Morph. 112, 45–60.

    CAS  PubMed  Google Scholar 

  92. Etkin, L. D. (1976) Regulation of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH) synthesis in liver nuclei, following their transfer into oocytes. Dev. Biol. 52. 201–209.

    CAS  PubMed  Google Scholar 

  93. De Robertis, E. M., Partington, G. A., Longthorne, R. F., and Gurdon, J. B. (1977) Somatic nuclei in amphibian oocytes: evidence for selective gene expression. J. Embryol. Exp. Morph. 40, 199–214.

    PubMed  Google Scholar 

  94. Korn, L. J. and Gurdon, J. B. (1981) The reactivation of developmentally inert 5S genes in somatic nuclei injected into Xenopus oocytes. Nature 289, 461–465.

    CAS  PubMed  Google Scholar 

  95. Aimar, C., and Delarue, M. (1980) Changes in somatic nuclei exposed to meiotic stimulation in amphibian oocytes. Biol. Cellulaire 38, 37–42.

    Google Scholar 

  96. Leonard, R. A., Hoffner, N. J., and Di Berardino, M. A. (1982) Induction of DNA synthesis in amphibian erythroid nuclei in Rana eggs following conditioning in meiotic oocytes. Dev. Biol. 92, 343–355.

    CAS  PubMed  Google Scholar 

  97. Graham, C. F., Arms, K., and Gurdon, J. B. (1966) The induction of DNA synthesis by frog egg cytoplasm. Dev. Biol. 14, 349–381.

    CAS  Google Scholar 

  98. Arms, K. (1968) Cytonucleoproteins in cleaving eggs of Xenopus laevis. J. Embryol. Exp. Morph. 20, 367–374.

    CAS  PubMed  Google Scholar 

  99. Merriam, R. W. (1969) Movement of cytoplasmic proteins into nuclei induced to enlarge and initiate DNA or RNA synthesis. J. Cell Sci. 5, 333–349.

    CAS  PubMed  Google Scholar 

  100. Hoffner, N. J. and Di Berardino, M. A. (1977) The acquisition of egg cytoplasmic non-histone proteins by nuclei during nuclear reprogramming. Exp. Cell Res. 108, 421–427.

    CAS  PubMed  Google Scholar 

  101. Gurdon, J. B. (1970) Nuclear transplantation and the control of gene activity in animal development. Proc. Roy. Soc. Lond. B. 176, 303–314.

    CAS  Google Scholar 

  102. Di Berardino, M. A. and Hoffner, N. J. (1975) Nucleo-cytoplasmic exchange of non-histone proteins in amphibian embryos. Exp. Cell Res. 94, 235–252.

    PubMed  Google Scholar 

  103. Katagiri, C., and Ohsumi, K. (1994) Remodeling of sperm chromatin induced in egg extracts of amphibians. Int. J. Dev. Biol. 38, 209–216.

    CAS  PubMed  Google Scholar 

  104. Dimitrov, S. and Wolffe, A. P. (1996) Remodeling somatic nuclei in Xenopus laevis egg extracts: Molecular mechanisms for the selective release of H1 and H10 from chromatin and the acquisition of transcriptional competence. EMBO J. 15, 5897–5906.

    CAS  PubMed  Google Scholar 

  105. Tung, T. C., Wu, S., Yeh, Y., Li, K., and Hsu, M (1977) Cell differentiation in ascidian studied by nuclear transplantation. Sci. Sin. 22, 222–233.

    Google Scholar 

  106. Crowther, R. J., Wu, S., and Whittaker, J. R. (1988) Cell differentiation features in embryos resulting from interphylum nuclear transplantation: echinoderm nucleus to ascidian zygote cytoplasm. Dev. Biol. 130, 443–453.

    CAS  PubMed  Google Scholar 

  107. Wakamatsu, Y., Bensheng, J., Pristyaznhyuk, I., Niwa, K., Ladygina, T., Kinoshita, M., Araki, K., and Ozato, K. (2001) Fertile and diploid nuclear transplants derived from embryonic cells of a small laboratory fish, medaka (Oryzias latipes). Proc. Nat’l. Acad. Sci. USA 98, 1071–176

    CAS  Google Scholar 

  108. Lee, K.Y., Huang, H., Ju, B., Yan, Z., and Lin, S. (2002). Cloned zebrafish by nuclear transfer from long-term-cultured cells. Nat Biotechnol 20, 795–799.

    CAS  PubMed  Google Scholar 

  109. Mittwoch, U. (2002) “Clone”: The history of a euphonius scientific term. Medical History 46, 381–402.

    PubMed  Google Scholar 

  110. King, T. J. (1966) Nuclear transplantation in amphibia. Methods Cell Physiol. 2, 1–36.

    Google Scholar 

  111. Di Berardino, M. A. (2001) Animal cloning-the route to new genomics in agriculture and medicine. Differentiation 68, 67–83.

    PubMed  Google Scholar 

  112. Woods G. L., White K. L., Vanderwall D. K., et al. (2003) A mule cloned from fetal cells by nuclear transfer. Science 301, 1063.

    CAS  PubMed  Google Scholar 

  113. Galli, C., Lagutina, I., Crotti, G., et al. (2003) Pregnancy: a cloned horse born to its dam twin. Nature 424, 635.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Di Berardino, M.A. (2006). Origin and Progress of Nuclear Transfer in Nonmammalian Animals. In: Verma, P.J., Trounson, A.O. (eds) Nuclear Transfer Protocols. Methods in Molecular Biology™, vol 348. Humana Press. https://doi.org/10.1007/978-1-59745-154-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-154-3_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-280-3

  • Online ISBN: 978-1-59745-154-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics