Skip to main content

Development of Pico-ESI-MS for Single-Cell Metabolomics Analysis

  • Protocol
  • First Online:
Single Cell Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2064))

Abstract

In this chapter, we introduced a Pico-ESI strategy for metabolomics analysis with picoliter-level samples. This Pico-ESI strategy was technically achieved by pulsed direct current electrospray ionization source (Pulsed-DC-ESI). This source could collect MS signals for a few minutes from a cell, enabling us to obtain large-scale MS2 data of metabolite IDs in single-cell analysis. Further identification of the single-cell metabolome such as the database match and chemical modification to metabolome was thereby achieved. Technically, this source could ionize sample with no need of sample and electrode contact, which can be potentially applied for high-throughput analysis. We also introduced several strategies related to Pico-ESI to reduce the matrix interference especially for extremely small samples developed in our group, including step-voltage nanoelectrospray, picoliter sample desalting method, droplet-based microextraction method, and probe-ESI, etc. All these strategies have been successfully applied to single-cell analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fiehn O (2002) Metabolomics--the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  Google Scholar 

  2. Holmes E, Wilson ID, Nicholson JK (2008) Metabolic phenotyping in health and disease. Cell 134:714–717

    Article  CAS  Google Scholar 

  3. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78

    Article  CAS  Google Scholar 

  4. Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    Article  CAS  Google Scholar 

  5. Griffin JL, Shockcor JP (2004) Metabolic profiles of cancer cells. Nat Rev Cancer 4:551–561

    Article  CAS  Google Scholar 

  6. Wilson ID, Nicholson JK, Castro-Perez J, Granger JH, Johnson KA, Smith BW, Plumb RS (2005) High resolution “ultra performance” liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J Proteome Res 4:591–598

    Article  CAS  Google Scholar 

  7. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396

    Article  CAS  Google Scholar 

  8. Beckonert O, Keun HC, Ebbels TMD, Bundy JG, Holmes E, Lindon JC, Nicholson JK (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703

    Article  CAS  Google Scholar 

  9. Doroghazi JR, Albright JC, Goering AW, Ju KS, Haines RR, Tchalukov KA, Labeda DP, Kelleher NL, Metcalf WW (2014) A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol 10:963–968

    Article  CAS  Google Scholar 

  10. Rubakhin SS, Romanova EV, Nemes P, Sweedler JV (2011) Profiling signaling peptides in single mammalian cells using mass spectrometry. Nat Methods 8:S20–S29

    Article  CAS  Google Scholar 

  11. Zenobi R (2013) Single-cell metabolomics: analytical and biological perspectives. Science 342:1201–120+

    Article  CAS  Google Scholar 

  12. Wang F, Pan XH, Kalmbach K, Seth-Smith ML, Ye XY, Antumes DMF, Yin Y, Liu L, Keefe DL, Weissman SM (2013) Robust measurement of telomere length in single cells. P Natl Acad Sci USA 110:E1906–E1912

    Article  CAS  Google Scholar 

  13. Ibanez AJ, Fagerer SR, Schmidt AM, Urban PL, Jefimovs K, Geiger P, Dechant R, Heinemann M, Zenobi R (2013) Mass spectrometry-based metabolomics of single yeast cells. P Natl Acad Sci USA 110:8790–8794

    Article  CAS  Google Scholar 

  14. Rubakhin SS, Lanni EJ, Sweedler JV (2013) Progress toward single cell metabolomics. Curr Opin Biotech 24:95–104

    Article  CAS  Google Scholar 

  15. Hummon AB, Sweedler JV, Corbin RW (2003) Discovering new neuropeptides using single-cell mass spectrometry. Trac-Trend Anal Chem 22:515–521

    Article  CAS  Google Scholar 

  16. Lapainis T, Rubakhin SS, Sweedler JV (2009) Capillary electrophoresis with electrospray ionization mass spectrometric detection for single cell metabolomics. Anal Chem 81:5858–5864

    Article  CAS  Google Scholar 

  17. Mizuno H, Tsuyama N, Harada T, Masujima T (2008) Live single-cell video-mass spectrometry for cellular and subcellular molecular detection and cell classification. J Mass Spectrom 43:1692–1700

    Article  CAS  Google Scholar 

  18. Tejedor ML, Mizuno H, Tsuyama N, Harada T, Masujima T (2012) In situ molecular analysis of plant tissues by live single-cell mass spectrometry. Anal Chem 84:5221–5228

    Article  Google Scholar 

  19. Stolee JA, Shrestha B, Mengistu G, Vertes A (2012) Observation of subcellular metabolite gradients in single cells by laser ablation electrospray ionization mass spectrometry. Angew Chem Int Ed 51:10386–10389

    Article  CAS  Google Scholar 

  20. Wei Z, Xiong X, Guo C, Si X, Zhao Y, He M, Yang C, Xu W, Tang F, Fang X, Zhang S, Zhang X (2015) Pulsed direct current electrospray: enabling systematic analysis of small volume sample by boosting sample economy. Anal Chem 87(22):11242–11248

    Article  CAS  Google Scholar 

  21. Wei ZW, Han S, Gong XY, Zhao YY, Yang CD, Zhang SC, Zhang XR (2013) Rapid removal of matrices from small-volume samples by step-voltage nanoelectrospray. Angew Chem Int Ed 52:11025–11028

    Article  CAS  Google Scholar 

  22. Mandal MK, Saha S, Yoshimura K, Shida Y, Takeda S, Nonami H, Hiraoka K (2013) Biomolecular analysis and cancer diagnostics by negative mode probe electrospray ionization. Analyst 138:1682–1688

    Article  CAS  Google Scholar 

  23. Yu Z, Chen LC, Suzuki H, Ariyada O, Erra-Balsells R, Nonami H, Hiraoka K (2009) Direct profiling of phytochemicals in tulip tissues and in vivo monitoring of the change of carbohydrate content in tulip bulbs by probe electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 20:2304–2311

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research is supported by the 973 program (Grant 2013CB933800), the National Natural Science Foundation of China (Grants 21390411 and 21125525), and the Ministry of Science and Technology of China (Grants 2011YQ090005 and 2011YQ6008402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinrong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wei, Z., Zhang, X., Si, X., Gong, X., Zhang, S., Zhang, X. (2020). Development of Pico-ESI-MS for Single-Cell Metabolomics Analysis. In: Shrestha, B. (eds) Single Cell Metabolism. Methods in Molecular Biology, vol 2064. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9831-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9831-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9829-6

  • Online ISBN: 978-1-4939-9831-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics