Skip to main content

Heme•G-Quadruplex DNAzymes: Conditions for Maximizing Their Peroxidase Activity

  • Protocol
  • First Online:
G-Quadruplex Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2035))

Abstract

Catalytic DNAs (DNAzymes) with peroxidase-like activity have great potential in bioanalytical chemistry [1], owing to numerous advantages that DNA enzymes offer over conventional protein enzymes, including structural simplicity, low cost, thermal stability, and straightforward handling and preparation. Maximizing the efficiency of the peroxidase activity of such DNAzymes is a subject in need of review. In this chapter, we discuss the optimal experimental conditions for the peroxidase activity of these DNAzymes and describe general procedures for their utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kosman J, Juskowiak B (2011) Peroxidase-mimicking DNAzymes for biosensing applications: a review. Anal Chim Acta 707(1-2):7–17. https://doi.org/10.1016/j.aca.2011.08.050

    Article  CAS  PubMed  Google Scholar 

  2. Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65(3):249–259

    Article  CAS  PubMed  Google Scholar 

  3. Travascio P, Li Y, Sen D (1998) DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem Biol 5(9):505–517

    Article  CAS  PubMed  Google Scholar 

  4. Li Y, Geyer CR, Sen D (1996) Recognition of anionic porphyrins by DNA aptamers. Biochemistry 35(21):6911–6922. https://doi.org/10.1021/bi960038h

    Article  CAS  PubMed  Google Scholar 

  5. Travascio P, Bennet AJ, Wang DY, Sen D (1999) A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites. Chem Biol 6(11):779–787

    Article  CAS  PubMed  Google Scholar 

  6. Travascio P, Witting PK, Mauk AG, Sen D (2001) The peroxidase activity of a hemin--DNA oligonucleotide complex: free radical damage to specific guanine bases of the DNA. J Am Chem Soc 123(7):1337–1348

    Article  CAS  PubMed  Google Scholar 

  7. Travascio P, Sen D, Bennet AJ (2006) DNA and RNA enzymes with peroxidase activity. An investigation into the mechanism of action. Can J Chem 84(4):613–619. https://doi.org/10.1139/v06-057

    Article  CAS  Google Scholar 

  8. Furtmuller PG, Zederbauer M, Jantschko W, Helm J, Bogner M, Jakopitsch C, Obinger C (2006) Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 445(2):199–213. https://doi.org/10.1016/j.abb.2005.09.017

    Article  CAS  PubMed  Google Scholar 

  9. Li W, Li Y, Liu Z, Lin B, Yi H, Xu F, Nie Z, Yao S (2016) Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity. Nucleic Acids Res 44(15):7373–7384. https://doi.org/10.1093/nar/gkw634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang T, Gong H, Ding P, Liu X, Li W, Bing T, Cao Z, Shangguan D (2016) Activity enhancement of G-quadruplex/hemin DNAzyme by flanking d(CCC). Chem Eur J 22(12):4015–4021. https://doi.org/10.1002/chem.201504797

    Article  CAS  PubMed  Google Scholar 

  11. Cheng M, Zhou J, Jia G, Ai X, Mergny J-L, Li C (2017) Relations between the loop transposition of DNA G-quadruplex and the catalytic function of DNAzyme. Biochim Biophys Acta Gen Subj 1861(8):1913–1920. https://doi.org/10.1016/j.bbagen.2017.05.016

    Article  CAS  PubMed  Google Scholar 

  12. Nakayama S, Sintim HO (2012) Investigating the interactions between cations, peroxidation substrates and G-quadruplex topology in DNAzyme peroxidation reactions using statistical testing. Anal Chim Acta 747:1–6. https://doi.org/10.1016/j.aca.2012.08.008

    Article  CAS  PubMed  Google Scholar 

  13. Saito K, Tai H, Hemmi H, Kobayashi N, Yamamoto Y (2012) Interaction between the heme and a G-quartet in a heme-DNA complex. Inorg Chem 51(15):8168–8176. https://doi.org/10.1021/ic3005739

    Article  CAS  PubMed  Google Scholar 

  14. Shibata T, Nakayama Y, Katahira Y, Tai H, Moritaka Y, Nakano Y, Yamamoto Y (2017) Characterization of the interaction between heme and a parallel G-quadruplex DNA formed from d(TTGAGG). Biochim Biophys Acta 1861(5 Pt B):1264–1270. https://doi.org/10.1016/j.bbagen.2016.11.005

    Article  CAS  Google Scholar 

  15. Cheng X, Liu X, Bing T, Cao Z, Shangguan D (2009) General peroxidase activity of G-quadruplex-hemin complexes and its application in ligand screening. Biochemistry 48(33):7817–7823. https://doi.org/10.1021/bi9006786

    Article  CAS  PubMed  Google Scholar 

  16. Kong DM, Yang W, Wu J, Li CX, Shen HX (2010) Structure-function study of peroxidase-like G-quadruplex-hemin complexes. Analyst 135(2):321–326. https://doi.org/10.1039/b920293e

    Article  CAS  PubMed  Google Scholar 

  17. Phan AT, Patel DJ (2003) Two-repeat human telomeric d(TAGGGTTAGGGT) sequence forms interconverting parallel and antiparallel G-quadruplexes in solution: distinct topologies, thermodynamic properties, and folding/unfolding kinetics. J Am Chem Soc 125(49):15021–15027. https://doi.org/10.1021/ja037616j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Smith FW, Lau FW, Feigon J (1994) d(G3T4G3) forms an asymmetric diagonally looped dimeric quadruplex with guanosine 5′-syn-syn-anti and 5′-syn-anti-anti N-glycosidic conformations. Proc Natl Acad Sci U S A 91(22):10546–10550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haider SM, Parkinson GN, Neidle S (2003) Structure of a G-quadruplex-ligand complex. J Mol Biol 326(1):117–125

    Article  CAS  PubMed  Google Scholar 

  20. Risitano A, Fox KR (2003) Stability of intramolecular DNA quadruplexes: Comparison with DNA duplexes. Biochemistry 42(21):6507–6513. https://doi.org/10.1021/bi026997v

    Article  CAS  PubMed  Google Scholar 

  21. Sen D, Gilbert W (1990) A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature 344(6265):410–414. https://doi.org/10.1038/344410a0

    Article  CAS  PubMed  Google Scholar 

  22. Venczel EA, Sen D (1993) Parallel and antiparallel G-DNA structures from a complex telomeric sequence. Biochemistry 32(24):6220–6228

    Article  CAS  PubMed  Google Scholar 

  23. Dai J, Carver M, Yang D (2008) Polymorphism of human telomeric quadruplex structures. Biochimie 90(8):1172–1183. https://doi.org/10.1016/j.biochi.2008.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rojas AM, Gonzalez PA, Antipov E, Klibanov AM (2007) Specificity of a DNA-based (DNAzyme) peroxidative biocatalyst. Biotechnol Lett 29(2):227–232. https://doi.org/10.1007/s10529-006-9228-y

    Article  CAS  PubMed  Google Scholar 

  25. Grigg JC, Shumayrikh N, Sen D (2014) G-quadruplex structures formed by expanded hexanucleotide repeat RNA and DNA from the neurodegenerative disease-linked C9orf72 gene efficiently sequester and activate heme. PLoS One 9(9):e106449. https://doi.org/10.1371/journal.pone.0106449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakayama S, Sintim HO (2010) Biomolecule detection with peroxidase-mimicking DNAzymes; expanding detection modality with fluorogenic compounds. Mol BioSyst 6(1):95–97. https://doi.org/10.1039/b916228c

    Article  CAS  PubMed  Google Scholar 

  27. Golub E, Freeman R, Willner I (2011) A hemin/G-quadruplex acts as an NADH oxidase and NADH peroxidase mimicking DNAzyme. Angew Chem Int Ed Engl 50(49):11710–11714

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Hamasaki K, Rando RR (1997) Specificity of aminoglycoside binding to RNA constructs derived from the 16S rRNA decoding region and the HIV-RRE activator region. Biochemistry 36(4):768–779. https://doi.org/10.1021/bi962095g

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Sen D (1996) A catalytic DNA for porphyrin metallation. Nat Struct Biol 3(9):743–747

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Sen D (1997) Toward an efficient DNAzyme. Biochemistry 36(18):5589–5599. https://doi.org/10.1021/bi962694n

    Article  CAS  PubMed  Google Scholar 

  31. Poon LC-H (2011) Structural and catalytic properties of DNA/RNA-heme complexes. (Thesis) M.Sc. Simon Faser University

    Google Scholar 

  32. Golub E, Albada HB, Liao WC, Biniuri Y, Willner I (2016) Nucleoapzymes: Hemin/G-quadruplex DNAzyme-Aptamer binding site conjugates with superior enzyme-like catalytic functions. J Am Chem Soc 138(1):164–172. https://doi.org/10.1021/jacs.5b09457

    Article  CAS  PubMed  Google Scholar 

  33. Canale TD, Sen D (2016) Hemin-utilizing G-quadruplex DNAzymes are strongly active in organic co-solvents. Biochim Biophys Acta. https://doi.org/10.1016/j.bbagen.2016.11.019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge grant funding from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shumayrikh, N., Sen, D. (2019). Heme•G-Quadruplex DNAzymes: Conditions for Maximizing Their Peroxidase Activity. In: Yang, D., Lin, C. (eds) G-Quadruplex Nucleic Acids. Methods in Molecular Biology, vol 2035. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9666-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9666-7_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9665-0

  • Online ISBN: 978-1-4939-9666-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics