Skip to main content

Enrichment of Low-Molecular-Weight Phosphorylated Biomolecules Using Phos-Tag Tip

  • Protocol
  • First Online:
Neuroproteomics

Part of the book series: Neuromethods ((NM,volume 146))

  • 824 Accesses

Abstract

In this chapter, we provide a standard protocol for phosphate-affinity column chromatography for the separation of phosphorylated and nonphosphorylated biomolecules by using a phosphate-binding zinc(II) complex of 1,3-bis(pyridin-2-ylmethylamino)propan-2-olate (Phos-tag). A 200-μL micropipette tip containing 10 μL of swollen agarose beads functionalized with Phos-tag moieties (Phos-tag Tip) was prepared. All steps in the phosphate-affinity separation (binding, washing, and elution) were conducted by using aqueous buffers at neutral pH values. The entire separation protocol required less than 30 min per sample. This micropipette-tip method would be thus used preferentially as an alternative to existing tools for the reliable enrichment of phosphorylated biomolecules, such as phosphopeptides, in the field of neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter T (2000) Signaling: 2000 and beyond. Cell 100:113–127

    Article  CAS  Google Scholar 

  2. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    Article  CAS  Google Scholar 

  3. Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8:530–541

    Article  CAS  Google Scholar 

  4. Brognard J, Hunter T (2011) Protein kinase signaling networks in cancer. Curr Opin Genet Dev 21:4–11

    Article  CAS  Google Scholar 

  5. Martin L, Latypova X, Terro F (2011) Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int 58:458–471

    Article  CAS  Google Scholar 

  6. Gross S, Rahal R, Stransky N, Lengauer C, Hoeflich KP (2015) Targeting cancer with kinase inhibitors. J Clin Invest 125:1780–1789

    Article  Google Scholar 

  7. Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154:250–254

    Article  CAS  Google Scholar 

  8. Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71:2883–2892

    Article  CAS  Google Scholar 

  9. Sano A, Nakamura H (2004) Titania as a chemo-affinity support for the column-switching HPLC analysis of phosphopeptides: application to the characterization of phosphorylation sites in proteins by combination with protease digestion and electrospray ionization mass spectrometry. Anal Sci 20:861–864

    Article  CAS  Google Scholar 

  10. Kinoshita E, Takahashi M, Takeda H, Shiro M, Koike T (2004) Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc(II) complex. Dalton Trans 1189–1193

    Google Scholar 

  11. Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5:749–757

    Article  CAS  Google Scholar 

  12. Kinoshita E, Yamada A, Takeda H, Kinoshita-Kikuta E, Koike T (2005) Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins. J Sep Sci 28:155–162

    Article  CAS  Google Scholar 

  13. Kinoshita-Kikuta E, Kinoshita E, Yamada A, Endo M, Koike T (2006) Enrichment of phosphorylated proteins from cell lysate using a novel phosphate-affinity chromatography at physiological pH. Proteomics 6:5088–5095

    Article  CAS  Google Scholar 

  14. Kinoshita-Kikuta E, Kinoshita E, Koike T (2009) Phos-tag beads as an immunoblotting enhancer for selective detection of phosphoproteins in cell lysates. Anal Biochem 389:83–85

    Article  CAS  Google Scholar 

  15. Yuan ET, Ino Y, Kawaguchi M, Kimura Y, Hirano H, Kinoshita-Kikuta E, Kinoshita E, Koike T (2017) A Phos-tag-based micropipette-tip method for rapid and selective enrichment of phosphopeptides. Electrophoresis 38:2447–2455

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by KAKENHI Grants 25293005 to E.K., 15 K07887 to E.K.-K., and 26460036 to T.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Kinoshita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kinoshita, E., Kinoshita-Kikuta, E., Koike, T. (2019). Enrichment of Low-Molecular-Weight Phosphorylated Biomolecules Using Phos-Tag Tip. In: Li, K. (eds) Neuroproteomics. Neuromethods, vol 146. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9662-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9662-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9661-2

  • Online ISBN: 978-1-4939-9662-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics