Skip to main content

Data-Independent Acquisition (SWATH) Mass Spectrometry Analysis of Protein Content in Primary Neuronal Cultures

  • Protocol
  • First Online:
Neuroproteomics

Part of the book series: Neuromethods ((NM,volume 146))

Abstract

Sequential Window Acquisition of all THeoretical fragment-ion (SWATH) is a recently developed discovery proteomics technique based on Data-Independent Acquisition (DIA) mass spectrometry. In this approach, MS/MS is performed simultaneously on all peptides contained in a predefined wide-open mass window of up to 25 Da. The mass window is sequentially stepped through over the entire mass range, usually between 400 and 1200 Da that covers most peptides. As quantitative MS/MS information is generated for all observable peptides in the sample, the missing data and variability between replicates are substantially reduced when compared to a Data-Dependent Acquisition approach. To identify each peptide from the high complexity of the MS/MS spectra generated from multiple peptides, a comprehensive reference spectral library derived prior from a similar sample by Data-Dependent Acquisition, rather than a conventional genome-wide database, should be used.

In this chapter, we describe a general protocol that benefits from the advances of SWATH-MS for the quantification of the primary neuronal culture proteome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dieterich DC, Kreutz MR (2016) Proteomics of the synapse—a quantitative approach to neuronal plasticity. Mol Cell Proteomics 15(2):368–381

    Article  CAS  Google Scholar 

  2. Pandya NJ, Koopmans F, Slotman JA, Paliukhovich I, Houtsmuller AB, Smit AB, Li KW (2017) Correlation profiling of brain sub-cellular proteomes reveals co-assembly of synaptic proteins and subcellular distribution. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  3. Michalski A, Cox J, Mann M (2011) More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is Inaccessible to data-dependent LC−MS/MS. J Proteome Res 10(4):1785–1793

    Article  CAS  Google Scholar 

  4. Law KP, Lim YP (2013) Recent advances in mass spectrometry: data independent analysis and hyper reaction monitoring. Expert Rev Proteomics 10(6):551–566

    Article  CAS  Google Scholar 

  5. Koopmans F, Ho JTC, Smit AB, Li KW (2017) Comparative analyses of data independent acquisition mass spectrometric approaches: DIA, WiSIM-DIA and untargeted DIA. Proteomics 18:1700304

    Article  Google Scholar 

  6. Bruderer R, Bernhardt OM, Gandhi T, Reiter L (2016) High-precision iRT prediction in the targeted analysis of data-independent acquisition and its impact on identification and quantitation. Proteomics 16(15–16):2246–2256

    Article  CAS  Google Scholar 

  7. Wang J, Tucholska M, Knight JDR, Lambert J-P, Tate S, Larsen B, Gingras A-C, Bandeira N (2015) MSPLIT-DIA: sensitive peptide identification for data-independent acquisition. Nat Methods 12(12):1106–1108

    Article  CAS  Google Scholar 

  8. Tsou C-C, Tsai C-F, Teo GC, Chen Y-J, Nesvizhskii AI (2016) Untargeted, spectral library-free analysis of data-independent acquisition proteomics data generated using Orbitrap mass spectrometers. Proteomics 16(15–16):2257–2271

    Article  CAS  Google Scholar 

  9. Li Y, Zhong C-Q, Xu X, Cai S, Wu X, Zhang Y, Chen J, Shi J, Lin S, Han J (2015) Group-DIA: analyzing multiple data-independent acquisition mass spectrometry data files. Nat Methods 12(12):1105–1106

    Article  CAS  Google Scholar 

  10. Bruderer R, Bernhardt OM, Gandhi T, Miladinović SM, Cheng L-Y, Messner S, Ehrenberger T, Zanotelli V, Butscheid Y, Escher C, Vitek O, Rinner O, Reiter L (2015) Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 14(5):1400–1410

    Article  CAS  Google Scholar 

  11. Bruderer R, Sondermann J, Tsou C-C, Barrantes-Freer A, Stadelmann C, Nesvizhskii AI, Schmidt M, Reiter L, Gomez-Varela D (2017) New targeted approaches for the quantification of data-independent acquisition mass spectrometry. Proteomics 17(9):1700021

    Article  Google Scholar 

  12. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  Google Scholar 

  13. Gonzalez-Lozano MA, Klemmer P, Gebuis T, Hassan C, van Nierop P, van Kesteren RE, Smit AB, Li KW (2016) Dynamics of the mouse brain cortical synaptic proteome during postnatal brain development. Sci Rep 6(1):35456

    Article  CAS  Google Scholar 

  14. Mineki R, Taka H, Fujimura T, Kikkawa M, Shindo N, Murayama K (2002) In situ alkylation with acrylamide for identification of cysteinyl residues in proteins during one- and two-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Proteomics 2(12):1672–1681

    Article  CAS  Google Scholar 

  15. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):O111.016717

    Article  Google Scholar 

  16. Peckner R, Myers SA, Jacome ASV, Egertson JD, Abelin JG, MacCoss MJ, Carr SA, Jaffe JD (2018) Specter: linear deconvolution for targeted analysis of data-independent acquisition mass spectrometry proteomics. Nat Methods 15(5):371–378

    Article  CAS  Google Scholar 

  17. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  Google Scholar 

  18. Ladner CL, Yang J, Turner RJ, Edwards RA (2004) Visible fluorescent detection of proteins in polyacrylamide gels without staining. Anal Biochem 326(1):13–20

    Article  CAS  Google Scholar 

  19. Escher C, Reiter L, Maclean B, Ossola R, Herzog F, Maccoss MJ, Rinner O (2014) Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 12(8):1111–1121

    Article  Google Scholar 

  20. Kang Y, Burton L, Lau A, Tate S (2017) SWATH-ID: An instrument method which combines identification and quantification in a single analysis. Proteomics 17(10):1500522

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Gonzalez-Lozano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gonzalez-Lozano, M.A., Koopmans, F. (2019). Data-Independent Acquisition (SWATH) Mass Spectrometry Analysis of Protein Content in Primary Neuronal Cultures. In: Li, K. (eds) Neuroproteomics. Neuromethods, vol 146. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9662-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9662-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9661-2

  • Online ISBN: 978-1-4939-9662-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics