Skip to main content

Neuroproteomics: The Methods

  • Protocol
  • First Online:
Neuroproteomics

Part of the book series: Neuromethods ((NM,volume 146))

  • 831 Accesses

Abstract

Neuroproteomics is a branch of proteomics that analyses the (sub-)proteomes of the nervous system qualitatively or quantitatively. This chapter introduces the various methodologies that are commonly used in neuroproteomics research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lepeta K, Lourenco MV, Schweitzer BC, Martino Adami PV, Banerjee P, Catuara-Solarz S, de La Fuente Revenga M, Guillem AM, Haidar M, Ijomone OM, Nadorp B, Qi L, Perera ND, Refsgaard LK, Reid KM, Sabbar M, Sahoo A, Schaefer N, Sheean RK, Suska A, Verma R, Vicidomini C, Wright D, Zhang XD, Seidenbecher C (2016) Synaptopathies: synaptic dysfunction in neurological disorders - a review from students to students. J Neurochem 138:785–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189

    Article  PubMed  PubMed Central  Google Scholar 

  3. Koopmans F, Ho JTC, Smit AB, Li KW (2018) Comparative analyses of data independent acquisition mass spectrometric approaches: DIA, WiSIM-DIA, and untargeted DIA. Proteomics 18(1):1700304

    Article  PubMed Central  Google Scholar 

  4. Pandya NJ, Koopmans F, Slotman JA, Paliukhovich I, Houtsmuller AB, Smit AB, Li KW (2017) Correlation profiling of brain sub-cellular proteomes reveals co-assembly of synaptic proteins and subcellular distribution. Sci Rep 7:12107

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sialana FJ, Gulyassy P, Majek P, Sjostedt E, Kis V, Muller AC, Rudashevskaya EL, Mulder J, Bennett KL, Lubec G (2016) Mass spectrometric analysis of synaptosomal membrane preparations for the determination of brain receptors, transporters and channels. Proteomics 16:2911–2920

    Article  CAS  PubMed  Google Scholar 

  6. Counotte DS, Goriounova NA, Li KW, Loos M, van der Schors RC, Schetters D, Schoffelmeer AN, Smit AB, Mansvelder HD, Pattij T, Spijker S (2011) Lasting synaptic changes underlie attention deficits caused by nicotine exposure during adolescence. Nat Neurosci 14:417–419

    Article  CAS  PubMed  Google Scholar 

  7. Van den Oever MC, Goriounova NA, Li KW, Van der Schors RC, Binnekade R, Schoffelmeer AN, Mansvelder HD, Smit AB, Spijker S, De Vries TJ (2008) Prefrontal cortex AMPA receptor plasticity is crucial for cue-induced relapse to heroin-seeking. Nat Neurosci 11:1053–1058

    Article  PubMed  Google Scholar 

  8. Heo S, Diering GH, Na CH, Nirujogi RS, Bachman JL, Pandey A, Huganir RL (2018) Identification of long-lived synaptic proteins by proteomic analysis of synaptosome protein turnover. Proc Natl Acad Sci U S A 115:E3827–E3836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Umoh ME, Dammer EB, Dai J, Duong DM, Lah JJ, Levey AI, Gearing M, Glass JD, Seyfried NT (2018) A proteomic network approach across the ALS-FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain. EMBO Mol Med 10:48–62

    Article  CAS  PubMed  Google Scholar 

  10. Ping L, Duong DM, Yin L, Gearing M, Lah JJ, Levey AI, Seyfried NT (2018) Global quantitative analysis of the human brain proteome in Alzheimer’s and Parkinson’s disease. Sci Data 5:180036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Monti C, Colugnat I, Lopiano L, Chio A, Alberio T (2018) Network analysis identifies disease-specific pathways for Parkinson’s Disease. Mol Neurobiol 55:370–381

    Article  CAS  PubMed  Google Scholar 

  12. Hondius DC, Eigenhuis KN, Morrema THJ, van der Schors RC, van Nierop P, Bugiani M, Li KW, Hoozemans JJM, Smit AB, Rozemuller AJM (2018) Proteomics analysis identifies new markers associated with capillary cerebral amyloid angiopathy in Alzheimer’s disease. Acta Neuropathol Commun 6:46

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hondius DC, van Nierop P, Li KW, Hoozemans JJ, van der Schors RC, van Haastert ES, van der Vies SM, Rozemuller AJ, Smit AB (2016) Profiling the human hippocampal proteome at all pathologic stages of Alzheimer’s disease. Alzheimers Dement 12:654–668

    Article  PubMed  Google Scholar 

  14. Suzuki T, Kametani K, Guo W, Li W (2018) Protein components of post-synaptic density lattice, a backbone structure for type I excitatory synapses. J Neurochem 144:390–407

    Article  CAS  PubMed  Google Scholar 

  15. Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S (2015) Laser capture microdissection: Big data from small samples. Histol Histopathol 30:1255–1269

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Drummond E, Nayak S, Faustin A, Pires G, Hickman RA, Askenazi M, Cohen M, Haldiman T, Kim C, Han X, Shao Y, Safar JG, Ueberheide B, Wisniewski T (2017) Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer’s disease. Acta Neuropathol 133:933–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wong TH, Chiu WZ, Breedveld GJ, Li KW, Verkerk AJ, Hondius D, Hukema RK, Seelaar H, Frick P, Severijnen LA, Lammers GJ, Lebbink JH, van Duinen SG, Kamphorst W, Rozemuller AJ, Netherlands Brain Bank, Bakker EB, International Parkinsonism Genetics Network, Neumann M, Willemsen R, Bonifati V, Smit AB, van Swieten J (2014) PRKAR1B mutation associated with a new neurodegenerative disorder with unique pathology. Brain 137:1361–1373

    Article  PubMed  Google Scholar 

  18. Chen N, van der Schors RC, Smit AB (2011) A 1D-PAGE/LC-ESI linear ion trap orbitrap MS approach for the analysis of synapse proteomes and synaptic protein complexes. In: Li KW (ed) Neuroproteomics. Humana Press, Totowa, NJ, pp 159–167

    Chapter  Google Scholar 

  19. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362

    Article  CAS  PubMed  Google Scholar 

  20. Hughes CS, Foehr S, Garfield DA, Furlong EE, Steinmetz LM, Krijgsveld J (2014) Ultrasensitive proteome analysis using paramagnetic bead technology. Mol Syst Biol 10:757

    Article  PubMed  Google Scholar 

  21. Chen N, Koopmans F, Gordon A, Paliukhovich I, Klaassen RV, van der Schors RC, Peles E, Verhage M, Smit AB, Li KW (2015) Interaction proteomics of canonical Caspr2 (CNTNAP2) reveals the presence of two Caspr2 isoforms with overlapping interactomes. Biochim Biophys Acta 1854:827–833

    Article  CAS  PubMed  Google Scholar 

  22. Li KW, Chen N, Klemmer P, Koopmans F, Karupothula R, Smit AB (2012) Identifying true protein complex constituents in interaction proteomics: the example of the DMXL2 protein complex. Proteomics 12:2428–2432

    Article  CAS  PubMed  Google Scholar 

  23. Pandya NJ, Klaassen RV, van der Schors RC, Slotman JA, Houtsmuller A, Smit AB, Li KW (2016) Group 1 metabotropic glutamate receptors 1 and 5 form a protein complex in mouse hippocampus and cortex. Proteomics 16:2698–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen N, Pandya NJ, Koopmans F, Castelo-Szekelv V, van der Schors RC, Smit AB, Li KW (2014) Interaction proteomics reveals brain region-specific AMPA receptor complexes. J Proteome Res 13:5695–5706

    Article  CAS  PubMed  Google Scholar 

  25. Liu F, Lossl P, Rabbitts BM, Balaban RS, Heck AJR (2018) The interactome of intact mitochondria by cross-linking mass spectrometry provides evidence for coexisting respiratory supercomplexes. Mol Cell Proteomics 17:216–232

    Article  CAS  PubMed  Google Scholar 

  26. Liu F, Rijkers DT, Post H, Heck AJ (2015) Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nat Methods 12:1179–1184

    Article  CAS  PubMed  Google Scholar 

  27. McAlister GC, Nusinow DP, Jedrychowski MP, Wuhr M, Huttlin EL, Erickson BK, Rad R, Haas W, Gygi SP (2014) MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86:7150–7158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R (2018) Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 14:e8126

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka Wan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, K.W. (2019). Neuroproteomics: The Methods. In: Li, K. (eds) Neuroproteomics. Neuromethods, vol 146. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9662-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9662-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9661-2

  • Online ISBN: 978-1-4939-9662-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics