Skip to main content

Three-Dimensional Epidermal Model from Human Hair Follicle-Derived Keratinocytes

  • Protocol
  • First Online:
Skin Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1993))

Abstract

Three-dimensional (3D) epidermal models reconstructed from human skin-derived keratinocytes have been utilized as an alternative to animal testing and models, not only in toxicology, but also in skin biology. Although there are currently several reconstructed human epidermis (RHE) models commercially available, the donors of the keratinocytes are not identified in these models. A tailor-made system is needed to investigate the individual differences in RHE derived from each donor.

It is possible to make an individual RHE using each donor’s keratinocytes, which are usually obtained by invasive procedures such as skin excision or biopsy. To overcome this drawback, we established an RHE model using keratinocytes derived from plucked hair follicles as a less invasive procedure under conditions without feeder cells, serum, or matrix proteins. In this chapter, we provide a method of isolation and two-dimensional (2D) culture of keratinocytes derived from adult human plucked hair follicles including the outer root sheath (ORS). We also provide a detailed protocol for establishing an RHE model by culturing the keratinocytes under a 3D culture condition. We believe that our less invasive technique will provide a useful tool for investigating individual RHE in both normal and disease settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imcke E, Mayer-da-Silva A, Detmar M, Tiel H, Stadler R, Orfanos CE (1987) Growth of human hair follicle keratinocytes in vitro. Ultrastructural features of a new model. J Am Acad Dermatol 17:779–786

    Article  CAS  Google Scholar 

  2. Limat A, Mauri D, Hunziker T (1996) Successful treatment of chronic leg ulcers with epidermal equivalents generated from cultured autologous outer root sheath cells. J Invest Dermatol 107:128–135

    Article  CAS  Google Scholar 

  3. Limat A, French LE, Blal L, Saurat JH, Hunziker T, Salomon D (2003) Organotypic cultures of autologous hair follicle keratinocytes for the treatment of recurrent leg ulcers. J Am Acad Dermatol 48:207–214

    Article  Google Scholar 

  4. Sasahara Y, Yoshikawa Y, Morinaga T, Nakano Y, Kanazawa N, Kotani J, Kawamata S, Murakami Y, Takeuchi K, Inoue C, Kitano Y, Hashimoto-Tamaoki T (2009) Human keratinocytes derived from the bulge region of hair follicles are refractory to differentiation. Int J Oncol 34:1191–1199

    CAS  Google Scholar 

  5. Aasen T, Izpisúa Belmonte JC (2010) Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat Protoc 5:371–382

    Article  CAS  Google Scholar 

  6. Guiraud B, Hernandez-Pigeon H, Ceruti I, Mas S, Palvadeau Y, Saint-Martory C, Castex-Rizzi N, Duplan H, Bessou-Touya S (2014) Characterization of a human epidermis model reconstructed from hair follicle keratinocytes and comparison with two commercially models and native skin. Int J Cosmet Sci 36:485–493

    Article  CAS  Google Scholar 

  7. Bacqueville D, Douki T, Duprat L, Rebelo-Moreira S, Guiraud B, Dromigny H, Perier V, Bessou-Touya S, Duplan H (2015) A new hair follicle-derived human epidermal model for the evaluation of sunscreen genoprotection. J Photochem Photobiol B 151:31–38

    Article  CAS  Google Scholar 

  8. Nakano M, Kamada N, Suehiro K, Oikawa A, Shibata C, Nakamura Y, Matsue H, Sasahara Y, Hosokawa H, Nakayama T, Nonaka K, Ohara O (2016) Establishment of a new three-dimensional human epidermal model reconstructed from plucked hair follicle-derived keratinocytes. Exp Dermatol 25:903–906

    Article  Google Scholar 

  9. Limat A, Noser FK (1986) Serial cultivation of single keratinocytes from the outer root sheath of human scalp hair follicles. J Invest Dermatol 87:485–488

    Article  CAS  Google Scholar 

  10. Limat A, Hunziker T, Boillat C, Bayreuther K, Noser F (1989) Post-mitotic human dermal fibroblasts efficiently support the growth of human follicular keratinocytes. J Invest Dermatol 92:758–762

    Article  CAS  Google Scholar 

  11. Moll I (1995) Proliferative potential of different keratinocytes of plucked human hair follicles. J Invest Dermatol 105:14–21

    Article  CAS  Google Scholar 

  12. Auxenfans C, Fradette J, Lequeux C, Germain L, Kinikoglu B, Bechetoille N, Braye F, Auger FA, Damour O (2009) Evolution of three dimensional skin equivalent models reconstructed in vitro by tissue engineering. Eur J Dermatol 19:107–113

    Article  Google Scholar 

  13. Ali N, Hosseini M, Vainio S, Taïeb A, Cario-André M, Rezvani HR (2015) Skin equivalents: skin from reconstructions as models to study skin development and diseases. Br J Dermatol 173:391–403

    Article  CAS  Google Scholar 

  14. Gysler A, Kleuser B, Sippl W, Lange K, Korting HC, Höltje HD, Korting HC (1999) Skin penetration and metabolism of topical glucocorticoids in reconstructed epidermis and in excised human skin. Pharm Res 16:1386–1391

    Article  CAS  Google Scholar 

  15. Stinchcomb AL (2003) Xenobiotic bioconversion in human epidermis models. Pharm Res 20:1113–1118

    Article  CAS  Google Scholar 

  16. Hu T, Bailey RE, Morrall SW, Aardema MJ, Stanley LA, Skare JA (2009) Dermal penetration and metabolism of p-aminophenol and p-phenylenediamine: application of the EpiDerm human reconstructed epidermis model. Toxicol Lett 188:119–129

    Article  CAS  Google Scholar 

  17. Gabbanini S, Lucchi E, Carli M, Berlini E, Minghetti A, Valgimigli L (2009) In vitro evaluation of the permeation through reconstructed human epidermis of essentials oils from cosmetic formulations. J Pharm Biomed Anal 50:370–376

    Article  CAS  Google Scholar 

  18. Kurasawa M, Kuroda S, Kida N, Murata M, Oba A, Yamamoto T, Sasaki H (2009) Regulation of tight junction permeability by sodium caprate in human keratinocytes and reconstructed epidermis. Biochem Biophys Res Commun 381:171–175

    Article  CAS  Google Scholar 

  19. Frasch HF, Dotson GS, Barbero AM (2011) In vitro human epidermal penetration of 1-bromopropane. J Toxicol Environ Health A 74:1249–1260

    Article  CAS  Google Scholar 

  20. Hoffmann J, Heisler E, Karpinski S, Losse J, Thomas D, Siefken W, Ahr HJ, Vohr HW, Fuchs HW (2005) Epidermal-skin-test 1,000 (EST-1,000)--a new reconstructed epidermis for in vitro skin corrosivity testing. Toxicol In Vitro 19:925–929

    Article  CAS  Google Scholar 

  21. Kandárová H, Liebsch M, Spielmann H, Genschow E, Schmidt E, Traue D, Guest R, Whittingham A, Warren N, Gamer AO, Remmele M, Kaufmann T, Wittmer E, De Wever B, Rosdy M (2006) Assessment of the human epidermis model SkinEthic RHE for in vitro skin corrosion testing of chemicals according to new OECD TG 431. Toxicol In Vitro 20:547–559

    Article  Google Scholar 

  22. Tornier C, Roquet M, Fraissinette Ade B (2010) Adaptation of the validated SkinEthic Reconstructed Human Epidermis (RHE) skin corrosion test method to 0.5 cm2 tissue sample. Toxicol In Vitro 24:1379–1385

    Article  CAS  Google Scholar 

  23. Portes P, Grandidier MH, Cohen C, Roguet R (2002) Refinement of the Episkin protocol for the assessment of acute skin irritation of chemicals: follow-up to the ECVAM prevalidation study. Toxicol In Vitro 16:765–770

    Article  CAS  Google Scholar 

  24. Coquette A, Berna N, Vandenbosch A, Rosdy M, De Wever B, Poumay Y (2003) Analysis of interleukin-1alpha (IL-1alpha) and interleukin-8 (IL-8) expression and release in in vitro reconstructed human epidermis for the prediction of in vivo skin irritation and/or sensitization. Toxicol In Vitro 17:311–321

    Article  CAS  Google Scholar 

  25. Borlon C, Godard P, Eskes C, Hartung T, Zuang V, Toussaint O (2007) The usefulness of toxicogenomics for predicting acute skin irritation on in vitro reconstructed human epidermis. Toxicology 241:157–166

    Article  CAS  Google Scholar 

  26. Lu B, Miao Y, Vigneron P, Chagnault V, Grand E, Wadouachi A, Postel D, Pezron I, Egles C, Vayssade M (2017) Measurement of cytotoxicity and irritancy potential of sugar-based surfactants on skin-related 3D models. Toxicol In Vitro 40:305–312

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takamitsu Matsuzawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Matsuzawa, T., Nakano, M., Oikawa, A., Nakamura, Y., Matsue, H. (2019). Three-Dimensional Epidermal Model from Human Hair Follicle-Derived Keratinocytes. In: Böttcher-Haberzeth, S., Biedermann, T. (eds) Skin Tissue Engineering. Methods in Molecular Biology, vol 1993. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9473-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9473-1_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9472-4

  • Online ISBN: 978-1-4939-9473-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics