Skip to main content

CellProfiler and KNIME: Open-Source Tools for High-Content Screening

  • Protocol
  • First Online:
Target Identification and Validation in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1953))

Abstract

High-content screening (HCS) has established itself in the world of the pharmaceutical industry as an essential tool for drug discovery and drug development. HCS is currently starting to enter the academic world and might become a widely used technology. Given the diversity of problems tackled in academic research, HCS could experience some profound changes in the future, mainly with more imaging modalities and smart microscopes being developed. One of the limitations in the establishment of HCS in academia is flexibility and cost. Flexibility is important to be able to adapt the HCS setup to accommodate the multiple different assays typical of academia. Many cost factors cannot be avoided, but the costs of the software packages necessary to analyze large datasets can be reduced by using open-source software. We present and discuss the open-source software CellProfiler for image analysis and KNIME for data analysis and data mining that provide software solutions, which increase flexibility and keep costs low.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnston AR, Powell RV (1970) Optics at the Jet Propulsion Laboratory. Appl Opt 9(2):271–275

    Article  CAS  Google Scholar 

  2. Harmon LD, KK C (1969) Picture processing by computer. Science 164(3875):19–29

    Article  CAS  Google Scholar 

  3. Lipkin LE, Lipkin BS (1975) Computers in the clinical pathologic laboratory: chemistry and image processing. Annu Rev Biophys Bioeng 4(1):529–577. https://doi.org/10.1146/annurev.bb.04.060175.002525

    Article  CAS  PubMed  Google Scholar 

  4. Blackwell RJ, Crisci WA (1975) Digital image processing technology and its application in forensic sciences. J Forensic Sci 20(2):17

    Article  Google Scholar 

  5. Archer JR (2004) History, evolution, and trends in compound management for high throughput screening. Assay Drug Dev Technol 2(6):675–681. https://doi.org/10.1089/adt.2004.2.675

    Article  CAS  PubMed  Google Scholar 

  6. Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66(7):1022–1037. https://doi.org/10.1021/np030096l

    Article  CAS  PubMed  Google Scholar 

  7. Ortholand J-Y, Ganesan A (2004) Natural products and combinatorial chemistry: back to the future. Curr Opin Chem Biol 8(3):271–280. https://doi.org/10.1016/j.cbpa.2004.04.011

    Article  CAS  PubMed  Google Scholar 

  8. Giuliano KA, DeBiasio RL, Dunlay RT, Gough A, Volosky JM, Zock J, Pavlakis GN, Taylor DL (1997) High-content screening: a new approach to easing key bottlenecks in the drug discovery process. J Biomol Screen 2(4):249

    Article  CAS  Google Scholar 

  9. Verkman AS (2004) Drug discovery in academia. Am J Physiol Cell Physiol 286(3):C465–C474

    Article  CAS  Google Scholar 

  10. Cressey D (2011) Drug-maker plans to cut jobs and spending as industry shies away from drug discovery. Nature 470:154. https://doi.org/10.1038/470154a

    Article  CAS  PubMed  Google Scholar 

  11. Holt R (2011) Dueling visions for science. Science 333(6049):1549–1549

    Article  CAS  Google Scholar 

  12. Gulledge J (2011) Debt crisis: crunch time for US science. Nature 477(7363):155–156

    Article  CAS  Google Scholar 

  13. Hunter P (2010) Facing the credit crunch. EMBO Rep 11(12):924–926

    Article  CAS  Google Scholar 

  14. D’Ausilio A (2011) Arduino: a low-cost multipurpose lab equipment. Behav Res Methods 44:1–9. https://doi.org/10.3758/s13428-011-0163-z

    Article  Google Scholar 

  15. Santos AF, Zaltsman AB, Martin RC, Kuzmin A, Alexandrov Y, Roquemore EP, Jessop RA, MGMv E, Verheijen JH (2008) Angiogenesis: an improved in vitro biological system and automated image-based workflow to aid identification and characterization of angiogenesis and angiogenic modulators. ASSAY Drug Dev Technol 6(5):693–710. https://doi.org/10.1089/adt.2008.146

    Article  CAS  PubMed  Google Scholar 

  16. Caicedo JC, Cooper S, Heigwer F, Warchal S, Qiu P, Molnar C, Vasilevich AS, Barry JD, Bansal HS, Kraus O, Wawer M, Paavolainen L, Herrmann MD, Rohban M, Hung J, Hennig H, Concannon J, Smith I, Clemons PA, Singh S, Rees P, Horvath P, Linington RG, Carpenter AE (2017) Data-analysis strategies for image-based cell profiling. Nat Methods 14:849. https://doi.org/10.1038/nmeth.4397

    Article  CAS  PubMed  Google Scholar 

  17. Carpenter A, Jones T, Lamprecht M, Clarke C, Kang I, Friman O, Guertin D, Chang J, Lindquist R, Moffat J, Golland P, Sabatini D (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100

    Article  Google Scholar 

  18. Kamentsky L, Jones TR, Fraser A, Bray M-A, Logan DJ, Madden KL, Ljosa V, Rueden C, Eliceiri KW, Carpenter AE (2011) Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27(8):1179–1180

    Article  CAS  Google Scholar 

  19. Bray M-A, Fraser AN, Hasaka TP, Carpenter AE (2011) Workflow and metrics for image quality control in large-scale high-content screens. J Biomol Screen 17(2):135–142

    Google Scholar 

  20. Jones R, Carpenter E, Lamprecht R, Moffat J, Silver S, Grenier K, Castoreno B, Eggert S, David R, Golland P, Sabatini D (2009) Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. PNAS 106(6):1826–1831

    Article  CAS  Google Scholar 

  21. Jones T, Kang I, Wheeler D, Lindquist R, Papallo A, Sabatini D, Golland P, Carpenter A (2008) CellProfiler Analyst: data exploration and analysis software for complex image-based screens. BMC Bioinformatics 9(1):482

    Article  Google Scholar 

  22. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(67):67

    Article  CAS  Google Scholar 

  23. Zhang XD (2007) A pair of new statistical parameters for quality control in RNA interference high-throughput screening assays. Genomics 89(4):552–561. https://doi.org/10.1016/j.ygeno.2006.12.014

    Article  CAS  PubMed  Google Scholar 

  24. Moddemeijer R (1999) A statistic to estimate the variance of the histogram based mutual information estimator based on dependent pairs of observations. Signal Process 75(1):51–63

    Article  Google Scholar 

  25. Pearson K (1896) Mathematical contributions to the theory of evolution. III. Regression, heredity and panmixia. Philos Trans R Soc Lond A 187:253–318

    Article  Google Scholar 

  26. Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15(1):72–101. https://doi.org/10.2307/1412159

    Article  Google Scholar 

  27. Kendall MG, Smith BB (1938) Randomness and random sampling numbers. J R Stat Soc 101(1):147–166. https://doi.org/10.2307/2980655

    Article  Google Scholar 

  28. Brideau C, Gunter B, Pikounis B, Liaw A (2003) Improved statistical methods for hit selection in high-throughput screening. J Biomol Screen 8(6):634–647

    Article  Google Scholar 

  29. Birmingham A, Selfors LM, Forster T, Wrobel D, Kennedy CJ, Shanks E, Santoyo-Lopez J, Dunican DJ, Long A, Kelleher D, Smith Q, Beijersbergen RL, Ghazal P, Shamu CE (2009) Statistical methods for analysis of high-throughput RNA interference screens. Nat Methods 6(8):569–575

    Article  CAS  Google Scholar 

  30. Shun TY, Lazo JS, Sharlow ER, Johnston PA (2011) Identifying actives from HTS data sets. J Biomol Screen 16(1):1–14

    Article  CAS  Google Scholar 

  31. Mahalanobis PC (1936) On the generalised distance in statistics. Proc Natl Inst Sci India 2(1):49–55

    Google Scholar 

  32. Conrad C, Gerlich DW (2010) Automated microscopy for high-content RNAi screening. J Cell Biol 188(4):453–461

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Max Planck Gesellschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Bickle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stöter, M., Janosch, A., Barsacchi, R., Bickle, M. (2019). CellProfiler and KNIME: Open-Source Tools for High-Content Screening. In: Moll, J., Carotta, S. (eds) Target Identification and Validation in Drug Discovery. Methods in Molecular Biology, vol 1953. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9145-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9145-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9144-0

  • Online ISBN: 978-1-4939-9145-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics