Skip to main content

Reactive Oxygen Species Detection in Senescent Cells

  • Protocol
  • First Online:
Cellular Senescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1896))

Abstract

Cumulative evidence suggests that cellular senescence plays a variety of important physiological roles, including tumor suppression, embryonic development and ageing. Senescent cells are characterized by increased production of reactive oxygen species (ROS), mostly produced by dysfunctional mitochondria. Both intracellular and extracellular ROS have been shown to contribute to the induction of senescence. ROS have also been shown to act as signaling molecules during senescence, stabilizing the cell-cycle arrest. In this chapter, we present a detailed description of protocols that allow us to characterize intracellular and extracellular ROS in live senescent cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  Google Scholar 

  2. Correia-Melo C, Hewitt G, Passos JF (2014) Telomeres, oxidative stress and inflammatory factors: partners in cellular senescence? Longev Healthspan 3:1

    Article  Google Scholar 

  3. Coppé JP, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:e301

    Article  Google Scholar 

  4. Jurk D, Wilson C, Passos JF et al (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun 2:4172

    Article  Google Scholar 

  5. Kang T-W, Yevsa T, Woller N et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479:547–551

    Article  CAS  Google Scholar 

  6. Krizhanovsky V, Yon M, Dickins RA et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667

    Article  CAS  Google Scholar 

  7. Demaria M, Ohtani N, Sameh a Y et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31:722–733

    Article  CAS  Google Scholar 

  8. Muñoz-Espín D, Cañamero M, Maraver A et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118

    Article  Google Scholar 

  9. Serrano M, Lin AW, Mccurrach ME et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    Article  CAS  Google Scholar 

  10. Baker DJ, Childs BG, Durik M et al (2016) Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530:184–189

    Article  CAS  Google Scholar 

  11. Childs B, Baker DJ, Wijshake T et al (2016) Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354:472

    Article  CAS  Google Scholar 

  12. Farr JN, Xu M, Weivoda MM et al (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23:1072

    Article  CAS  Google Scholar 

  13. Ogrodnik M, Miwa S, Tchkonia T et al (2017) Cellular senescence drives age-dependent hepatic steatosis. Nat Commun 8:15691

    Article  CAS  Google Scholar 

  14. Schafer MJ, White TA, Iijima K et al (2017) Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8:14532

    Article  CAS  Google Scholar 

  15. Xu M, Palmer AK, Ding H et al (2015) Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife 4:e12997

    Article  Google Scholar 

  16. Correia-Melo C, Marques FDM, Anderson R et al (2016) Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J 35:724–742

    Article  CAS  Google Scholar 

  17. Passos JF, Saretzki G, Ahmed S et al (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5:e110

    Article  Google Scholar 

  18. Nelson G, Wordsworth J, Wang C et al (2012) A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11:345–349

    Article  CAS  Google Scholar 

  19. Lee AC, Fenster BE, Ito H et al (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 274:7936–7940

    Article  CAS  Google Scholar 

  20. Macip S, Igarashi M, Berggren P et al (2003) Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol Cell Biol 23:8576–8585

    Article  CAS  Google Scholar 

  21. Macip S, Igarashi M, Fang L et al (2002) Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 21:2180–2188

    Article  CAS  Google Scholar 

  22. Passos JF, Nelson G, Wang C et al (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347

    Article  Google Scholar 

  23. Birch J, Passos JF (2017) Targeting the SASP to combat ageing: mitochondria as possible intracellular allies? BioEssays 39

    Google Scholar 

  24. Kalyanaraman B, Darley-Usmar V, Davies KJA et al (2011) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52:1–6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João F. Passos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Victorelli, S., Passos, J.F. (2019). Reactive Oxygen Species Detection in Senescent Cells. In: Demaria, M. (eds) Cellular Senescence. Methods in Molecular Biology, vol 1896. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8931-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8931-7_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8930-0

  • Online ISBN: 978-1-4939-8931-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics