Skip to main content

Immunofluorescence Microscopy to Study Endogenous TAZ in Mammalian Cells

  • Protocol
  • First Online:
The Hippo Pathway

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1893))

Abstract

The transcriptional coactivator with PDZ-binding motif (TAZ), which is encoded by the WWTR1 gene, is a key transcriptional effector of the Hippo signaling pathway. TAZ function has been implicated in a variety of developmental processes and diseases, most notably in driving oncogenesis. Given that nuclear-cytoplasmic localization dynamics dictate TAZ activity, techniques for visualizing TAZ localization are critical for its study. Here we describe an immunofluorescence microscopy protocol that allows for the visualization of TAZ subcellular localization in mammalian cells, offering an approach that can aid in the analysis of TAZ regulation and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fu V, Plouffe SW, Guan KL (2018) The Hippo pathway in organ development, homeostasis, and regeneration. Curr Opin Cell Biol 49:99–107. https://doi.org/10.1016/j.ceb.2017.12.012

    Article  CAS  PubMed Central  Google Scholar 

  2. Varelas X (2014) The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 141(8):1614–1626. https://doi.org/10.1242/dev.102376

    Article  CAS  PubMed  Google Scholar 

  3. Mahoney WM Jr, Hong JH, Yaffe MB, Farrance IK (2005) The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) family members. Biochem J 388(Pt 1):217–225. https://doi.org/10.1042/BJ20041434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang H, Liu CY, Zha ZY, Zhao B, Yao J, Zhao S, Xiong Y, Lei QY, Guan KL (2009) TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J Biol Chem 284(20):13355–13362. https://doi.org/10.1074/jbc.M900843200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hiemer SE, Szymaniak AD, Varelas X (2014) The transcriptional regulators TAZ and YAP direct transforming growth factor beta-induced tumorigenic phenotypes in breast cancer cells. J Biol Chem 289(19):13461–13474. https://doi.org/10.1074/jbc.M113.529115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Levasseur A, St-Jean G, Paquet M, Boerboom D, Boyer A (2017) Targeted disruption of YAP and TAZ impairs the maintenance of the adrenal cortex. Endocrinology 158(11):3738–3753. https://doi.org/10.1210/en.2017-00098

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, Makita R, Kurihara H, Morin-Kensicki EM, Nojima H, Rossant J, Nakao K, Niwa H, Sasaki H (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16(3):398–410. https://doi.org/10.1016/j.devcel.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  8. Poitelon Y, Lopez-Anido C, Catignas K, Berti C, Palmisano M, Williamson C, Ameroso D, Abiko K, Hwang Y, Gregorieff A, Wrana JL, Asmani M, Zhao R, Sim FJ, Wrabetz L, Svaren J, Feltri ML (2016) YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells. Nat Neurosci 19(7):879–887. https://doi.org/10.1038/nn.4316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J, Porrello ER, Mahmoud AI, Tan W, Shelton JM, Richardson JA, Sadek HA, Bassel-Duby R, Olson EN (2013) Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci U S A 110(34):13839–13844. https://doi.org/10.1073/pnas.1313192110

    Article  PubMed  PubMed Central  Google Scholar 

  10. Reginensi A, Hoshi M, Boualia SK, Bouchard M, Jain S, McNeill H (2015) Yap and Taz are required for Ret-dependent urinary tract morphogenesis. Development 142(15):2696–2703. https://doi.org/10.1242/dev.122044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meng Z, Moroishi T, Guan KL (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30(1):1–17. https://doi.org/10.1101/gad.274027.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M, Hisaminato A, Fujiwara T, Ito Y, Cantley LC, Yaffe MB (2000) TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J 19(24):6778–6791. https://doi.org/10.1093/emboj/19.24.6778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, Zhao S, Xiong Y, Guan KL (2008) TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 28(7):2426–2436. https://doi.org/10.1128/MCB.01874-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, Li T, Chan SW, Lim CJ, Hong W, Zhao S, Xiong Y, Lei QY, Guan KL (2010) The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem 285(48):37159–37169. https://doi.org/10.1074/jbc.M110.152942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moroishi T, Hansen CG, Guan KL (2015) The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer 15(2):73–79. https://doi.org/10.1038/nrc3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zanconato F, Cordenonsi M, Piccolo S (2016) YAP/TAZ at the roots of cancer. Cancer Cell 29(6):783–803. https://doi.org/10.1016/j.ccell.2016.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beyer TA, Weiss A, Khomchuk Y, Huang K, Ogunjimi AA, Varelas X, Wrana JL (2013) Switch enhancers interpret TGF-beta and Hippo signaling to control cell fate in human embryonic stem cells. Cell Rep 5(6):1611–1624. https://doi.org/10.1016/j.celrep.2013.11.021

    Article  CAS  PubMed  Google Scholar 

  18. Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, Rossant J, Wrana JL (2010) The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell 19(6):831–844. https://doi.org/10.1016/j.devcel.2010.11.012

    Article  CAS  PubMed  Google Scholar 

  19. Reginensi A, Scott RP, Gregorieff A, Bagherie-Lachidan M, Chung C, Lim DS, Pawson T, Wrana J, McNeill H (2013) Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet 9(3):e1003380. https://doi.org/10.1371/journal.pgen.1003380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100. https://doi.org/10.1186/gb-2006-7-10-r100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Jeffrey Wrana (Lunenfeld-Tanenbaum Research Institute, Toronto, Canada) for providing the Taz-loxP/loxP mice. X.V. is supported by NIH R01HL124392, the March of Dimes Foundation Grant no. 1-FY17-375, and an American Cancer Society Ellison New England Research Scholar Grant (RSG-17-138-01-CSM). N. M. K. is supported by NIH T32HL007035-40. J.H.B. is supported by NIH F31HL13250601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xaralabos Varelas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kingston, N.M., Tilston-Lunel, A.M., Hicks-Berthet, J., Varelas, X. (2019). Immunofluorescence Microscopy to Study Endogenous TAZ in Mammalian Cells. In: Hergovich, A. (eds) The Hippo Pathway. Methods in Molecular Biology, vol 1893. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8910-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8910-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8909-6

  • Online ISBN: 978-1-4939-8910-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics