Skip to main content

Spheroid Culture of Human Pancreatic Ductal Cells to Reconstitute Development of Pancreatic Intraepithelial Neoplasia

  • Protocol
  • First Online:
Pancreatic Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1882))

  • 3323 Accesses

Abstract

Pancreatic ductal adenocarcinoma (PDA) presents poor 5-year survival rate, mainly attributable to late diagnosis due to its asymptomatic nature. Therefore, building human cell-based systems that reconstitute hallmark features of the PDA precursors, pancreatic intraepithelial neoplasia (PanINs), will accelerate development of new strategies for early diagnostics and intervention. We previously demonstrated that systematic introduction of genetic modification (KRAS, CDKN2A, SMAD4, and TP53) leads to immortalization of primary human pancreatic cells and, upon orthotopic transplantation, their development to human PanIN-like lesions. Here, we describe detailed methods for fluorescence-activated cell sorting, lentiviral transduction, and three-dimensional spheroid culture of primary adult human pancreatic ductal cells, as well as a method for clonal selection of human pancreatic ductal spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN, Kern SE, Klimstra DS, Kloppel G, Longnecker DS, Luttges J, Offerhaus GJ (2001) Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 25(5):579–586

    Article  CAS  Google Scholar 

  2. Basturk O, Hong SM, Wood LD, Adsay NV, Albores-Saavedra J, Biankin AV, Brosens LA, Fukushima N, Goggins M, Hruban RH, Kato Y, Klimstra DS, Kloppel G, Krasinskas A, Longnecker DS, Matthaei H, Offerhaus GJ, Shimizu M, Takaori K, Terris B, Yachida S, Esposito I, Furukawa T (2015) A revised classification system and recommendations from the baltimore consensus meeting for neoplastic precursor lesions in the pancreas. Am J Surg Pathol 39(12):1730–1741. https://doi.org/10.1097/PAS.0000000000000533

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, Kawaguchi Y, Johann D, Liotta LA, Crawford HC, Putt ME, Jacks T, Wright CV, Hruban RH, Lowy AM, Tuveson DA (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4(6):437–450

    Article  CAS  Google Scholar 

  4. Perez-Mancera PA, Rust AG, van der Weyden L, Kristiansen G, Li A, Sarver AL, Silverstein KA, Grutzmann R, Aust D, Rummele P, Knosel T, Herd C, Stemple DL, Kettleborough R, Brosnan JA, Morgan R, Knight S, Yu J, Stegeman S, Collier LS, ten Hoeve JJ, de Ridder J, Klein AP, Goggins M, Hruban RH, Chang DK, Biankin AV, Grimmond SM, Wessels LF, Wood SA, Iacobuzio-Donahue CA, Pilarsky C, Largaespada DA, Adams DJ, Tuveson DA (2012) The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 486(7402):266–270. https://doi.org/10.1038/nature11114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee J, Snyder ER, Liu Y, Gu X, Wang J, Flowers BM, Kim YJ, Park S, Szot GL, Hruban RH, Longacre TA, Kim SK (2017) Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells. Nat Commun 8:14686. https://doi.org/10.1038/ncomms14686

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee J, Sugiyama T, Liu Y, Wang J, Gu X, Lei J, Markmann JF, Miyazaki S, Miyazaki J, Szot GL, Bottino R, Kim SK (2013) Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. eLife 2:e00940. https://doi.org/10.7554/eLife.00940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim MP, Evans DB, Wang H, Abbruzzese JL, Fleming JB, Gallick GE (2009) Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc 4(11):1670–1680. https://doi.org/10.1038/nprot.2009.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James J. Lee or Seung K. Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, J.J., Kim, S.K. (2019). Spheroid Culture of Human Pancreatic Ductal Cells to Reconstitute Development of Pancreatic Intraepithelial Neoplasia. In: Su, G. (eds) Pancreatic Cancer. Methods in Molecular Biology, vol 1882. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8879-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8879-2_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8878-5

  • Online ISBN: 978-1-4939-8879-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics