Skip to main content

Measurement of Reactive Oxygen Species by Fluorescent Probes in Pancreatic Cancer Cells

  • Protocol
  • First Online:
Pancreatic Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1882))

Abstract

Pancreatic cancer is a highly lethal disease and is projected to become the second leading cause of cancer-related death by 2020. Among the different subtypes, pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. The genetic landscape of PDAC shows nearly ubiquitous mutations of KRAS. However, expression of KRAS somatic mutants alone is insufficient to drive PDAC. Redox deregulation may contribute significantly to KRAS-mediated PDAC. Thus, measurement of cellular reactive oxygen species (ROS) levels is essential to determine how oxidative stress affects mutant KRAS and modulates intracellular signaling pathways leading to the change of cellular functions and the development of PDAC. Here we describe the protocol for comparative measurement of several key forms of ROS, including intracellular and mitochondrial levels of superoxide as well as extracellular H2O2 and general cellular ROS, with oxidation-sensitive fluorescent probes using flow cytometry in pancreatic cancer cells or mutant KRAS transformed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hezel AF, Kimmelman AC, Stanger BZ et al (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20:1218–1249

    Article  CAS  Google Scholar 

  2. Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  CAS  Google Scholar 

  3. Rozenblum E, Schutte M, Goggins M et al (1997) Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res 57:1731–1734

    CAS  PubMed  Google Scholar 

  4. Guerra C, Schuhmacher AJ, Canamero M et al (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11:291–302

    Article  CAS  Google Scholar 

  5. Guerra C, Collado M, Navas C et al (2011) Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 19:728–739

    Article  CAS  Google Scholar 

  6. DeNicola GM, Karreth FA, Humpton TJ et al (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:106–109

    Article  CAS  Google Scholar 

  7. Irani K, Xia Y, Zweier JL et al (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275:1649–1652

    Article  CAS  Google Scholar 

  8. Chio IIC, Jafarnejad SM, Ponz-Sarvise M et al (2016) NRF2 Promotes Tumor Maintenance by Modulating mRNA Translation in Pancreatic Cancer. Cell 166:963–976

    Article  CAS  Google Scholar 

  9. Mitchell L, Hobbs GA, Aghajanian A et al (2013) Redox regulation of Ras and Rho GTPases: mechanism and function. Antioxid Redox Signal 18:250–258

    Article  CAS  Google Scholar 

  10. Wu RF, Terada LS (2009) Ras and Nox: Linked signaling networks? Free Radic Biol Med 47:1276–1281

    Article  CAS  Google Scholar 

  11. Lu W, Hu Y, Chen G et al (2012) Novel role of NOX in supporting aerobic glycolysis in cancer cells with mitochondrial dysfunction and as a potential target for cancer therapy. PLoS Biol 10:e1001326

    Article  CAS  Google Scholar 

  12. Lu W, Ogasawara MA, Huang P (2007) Models of reactive oxygen species in cancer. Drug Discov Today Dis Models 4:67–73

    Article  Google Scholar 

  13. Birben E, Sahiner UM, Sackesen C et al (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19

    Article  CAS  Google Scholar 

  14. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  CAS  Google Scholar 

  15. Szibor M, Richter C, Ghafourifar P (2001) Redox control of mitochondrial functions. Antioxid Redox Signal 3:515–523

    Article  CAS  Google Scholar 

  16. Le Bras M, Clement MV, Pervaiz S et al (2005) Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol 20:205–219

    PubMed  Google Scholar 

  17. Trachootham D, Lu W, Ogasawara MA et al (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1374

    Article  CAS  Google Scholar 

  18. Breen AP, Murphy JA (1995) Reactions of oxyl radicals with DNA. Free Radic Biol Med 18:1033–1077

    Article  CAS  Google Scholar 

  19. Smith CD, Carney JM, Starke-Reed PE et al (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A 88:10540–10543

    Article  CAS  Google Scholar 

  20. Sawada M, Carlson JC (1987) Changes in superoxide radical and lipid peroxide formation in the brain, heart and liver during the lifetime of the rat. Mech Ageing Dev 41:125–137

    Article  CAS  Google Scholar 

  21. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591

    Article  CAS  Google Scholar 

  22. Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158–167

    Article  CAS  Google Scholar 

  23. Brand MD (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100:14–31

    Article  CAS  Google Scholar 

  24. Sies H, Berndt C, Jones DP (2017) Oxidative Stress. Annu Rev Biochem 86:715–748

    Article  CAS  Google Scholar 

  25. Jaeschke H (2011) Reactive oxygen and mechanisms of inflammatory liver injury: Present concepts. J Gastroenterol Hepatol 26(Suppl 1):173–179

    Article  CAS  Google Scholar 

  26. Chio IIC, Tuveson DA (2017) ROS in cancer: the burning question. Trends Mol Med 23:411–429

    Article  CAS  Google Scholar 

  27. Lenzen S (1861) Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic beta-cells. Biochim Biophys Acta 2017:1929–1942

    Google Scholar 

  28. Poprac P, Jomova K, Simunkova M et al (2017) Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 38:592–607

    Article  CAS  Google Scholar 

  29. Zhou M, Diwu Z, Panchuk-Voloshina N et al (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:162–168

    Article  CAS  Google Scholar 

  30. Alexandre J, Hu Y, Lu W et al (2007) Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. Cancer Res 67:3512–3517

    Article  CAS  Google Scholar 

  31. Hu Y, Lu W, Chen G et al (2012) K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res 22:399–412

    Article  CAS  Google Scholar 

  32. Trachootham D, Zhou Y, Zhang H et al (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10:241–252

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the Start-up Funds from Stony Brook University [W. L], the Pilot Project Grant from the Department of Medicine at Stony Brook University [W. L], a P20 grant from NIH [5P20CA192994-02 to W.L as a coinvestigator], and the National Science Foundation of China [81370957 to Y.L].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongde Luo or Weiqin Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Luo, Y., Wang, D., Abbruzzese, J.L., Lu, W. (2019). Measurement of Reactive Oxygen Species by Fluorescent Probes in Pancreatic Cancer Cells. In: Su, G. (eds) Pancreatic Cancer. Methods in Molecular Biology, vol 1882. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8879-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8879-2_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8878-5

  • Online ISBN: 978-1-4939-8879-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics