Skip to main content

Evaluating Stress Granules in Pancreatic Cancer In Vitro and In Vivo

  • Protocol
  • First Online:
Pancreatic Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1882))

Abstract

Stress granules are nonmembranous organelles that function as a stress-adaptation mechanism. We have recently shown that stress granules are mobilized by mutant KRAS pancreatic cancer cells under stress to enhance tumor fitness and survival. In this chapter, we outline a method for inducing, detecting, and quantifying stress granules in pancreatic cancer cells in vitro and in vivo. This method can be utilized to better understand the mechanisms driving stress granule formation and their role in pancreatic tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Protter DS, Parker R (2016) Principles and properties of stress granules. Trends Cell Biol 26(9):668–679

    Article  CAS  Google Scholar 

  2. Anderson P, Kedersha N, Ivanov P (2015) Stress granules, P-bodies and cancer. Biochim Biophys Acta 1849(7):861–870

    Article  CAS  Google Scholar 

  3. Somasekharan SP et al (2015) YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1. J Cell Biol 208(7):913–929

    Article  CAS  Google Scholar 

  4. Grabocka E, Bar-Sagi D (2016) Mutant KRAS enhances tumor cell fitness by upregulating stress granules. Cell 167(7):1803–1813 e12

    Article  CAS  Google Scholar 

  5. Aulas A et al (2017) Stress-specific differences in assembly and composition of stress granules and related foci. J Cell Sci 130(5):927–937

    Article  CAS  Google Scholar 

  6. Stoecklin G et al (2004) MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J 23(6):1313–1324

    Article  CAS  Google Scholar 

  7. Adjibade P et al (2015) Sorafenib, a multikinase inhibitor, induces formation of stress granules in hepatocarcinoma cells. Oncotarget 6(41):43927–43943

    Article  Google Scholar 

  8. Kaehler C et al (2014) 5-fluorouracil affects assembly of stress granules based on RNA incorporation. Nucleic Acids Res 42(10):6436–6447

    Article  CAS  Google Scholar 

  9. Fournier MJ, Gareau C, Mazroui R (2010) The chemotherapeutic agent bortezomib induces the formation of stress granules. Cancer Cell Int 10:12

    Article  Google Scholar 

  10. Jain S et al (2016) ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164(3):487–498

    Article  CAS  Google Scholar 

  11. Souquere S et al (2009) Unravelling the ultrastructure of stress granules and associated P-bodies in human cells. J Cell Sci 122(Pt 20):3619–3626

    Article  CAS  Google Scholar 

  12. Arimoto K et al (2008) Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol 10(11):1324–1332

    Article  CAS  Google Scholar 

  13. Wippich F et al (2013) Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152(4):791–805

    Article  CAS  Google Scholar 

  14. Buchan JR, Yoon JH, Parker R (2011) Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae. J Cell Sci 124(Pt 2):228–239

    Article  CAS  Google Scholar 

  15. Ohn T et al (2008) A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. Nat Cell Biol 10(10):1224–1231

    Article  CAS  Google Scholar 

  16. Kwon S, Zhang Y, Matthias P (2007) The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev 21(24):3381–3394

    Article  CAS  Google Scholar 

  17. Mahboubi H, Barise R, Stochaj U (2015) 5'-AMP-activated protein kinase alpha regulates stress granule biogenesis. Biochim Biophys Acta 1853(7):1725–1737

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elda Grabocka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sim, E., Irollo, E., Grabocka, E. (2019). Evaluating Stress Granules in Pancreatic Cancer In Vitro and In Vivo. In: Su, G. (eds) Pancreatic Cancer. Methods in Molecular Biology, vol 1882. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8879-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8879-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8878-5

  • Online ISBN: 978-1-4939-8879-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics