Skip to main content

How to Generate Non-Mosaic CRISPR/Cas9 Mediated Knock-In and Mutations in F0 Xenopus Through the Host-Transfer Technique

  • Protocol
  • First Online:
Xenopus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1865))

Abstract

We have taken advantage of the well-established oocyte host transfer technique to optimize a method for CRISPR editing of Xenopus that provides an efficient non-mosaic targeted insertion of small DNA fragment through homology-directed repair mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. https://doi.org/10.1016/j.cell.2013.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nakayama T, Blitz IL, Fish MB, Odeleye AO, Manohar S, Cho KW, Grainger RM (2014) Cas9-based genome editing in Xenopus tropicalis. Methods Enzymol 546:355–375. https://doi.org/10.1016/B978-0-12-801185-0.00017-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blitz IL, Biesinger J, Xie X, Cho KW (2013) Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis 51(12):827–834. https://doi.org/10.1002/dvg.22719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kotani H, Taimatsu K, Ohga R, Ota S, Kawahara A (2015) Efficient multiple genome modifications induced by the crRNAs, tracrRNA and Cas9 protein complex in Zebrafish. PLoS One 10(5):e0128319. https://doi.org/10.1371/journal.pone.0128319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM (2013) Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51(12):835–843. https://doi.org/10.1002/dvg.22720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang F, Shi Z, Cui Y, Guo X, Shi YB, Chen Y (2015) Targeted gene disruption in Xenopus laevis using CRISPR/Cas9. Cell Biosci 5:15. https://doi.org/10.1186/s13578-015-0006-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514(7522):380–384. https://doi.org/10.1038/nature13589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aslan Y, Tadjuidje E, Zorn AM, Cha SW (2017) High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0 Xenopus. Development 144(15):2852–2858. https://doi.org/10.1242/dev.152967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miyaoka Y, Chan AH, Judge LM, Yoo J, Huang M, Nguyen TD, Lizarraga PP, So PL, Conklin BR (2014) Isolation of single-base genome-edited human iPS cells without antibiotic selection. Nat Methods 11(3):291–293. https://doi.org/10.1038/nmeth.2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu Z, Chen H, Liu J, Zhang H, Yan Y, Zhu N, Guo Y, Yang B, Chang Y, Dai F, Liang X, Chen Y, Shen Y, Deng WM, Chen J, Zhang B, Li C, Jiao R (2014) Various applications of TALEN- and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome. Biol Open 3(4):271–280. https://doi.org/10.1242/bio.20147682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harrison MM, Jenkins BV, O'Connor-Giles KM, Wildonger J (2014) A CRISPR view of development. Genes Dev 28(17):1859–1872. https://doi.org/10.1101/gad.248252.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peng Y, Clark KJ, Campbell JM, Panetta MR, Guo Y, Ekker SC (2014) Making designer mutants in model organisms. Development 141(21):4042–4054. https://doi.org/10.1242/dev.102186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo X, Zhang T, Hu Z, Zhang Y, Shi Z, Wang Q, Cui Y, Wang F, Zhao H, Chen Y (2014) Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development 141(3):707–714. https://doi.org/10.1242/dev.099853

    Article  CAS  PubMed  Google Scholar 

  15. Mir A, Heasman J (2008) How the mother can help: studying maternal Wnt signaling by anti-sense-mediated depletion of maternal mRNAs and the host transfer technique. Methods Mol Biol 469:417–429. https://doi.org/10.1007/978-1-60327-469-2_26

    Article  CAS  PubMed  Google Scholar 

  16. Olson DJ, Hulstrand AM, Houston DW (2012) Maternal mRNA knock-down studies: antisense experiments using the host-transfer technique in Xenopus laevis and Xenopus tropicalis. Methods Mol Biol 917:167–182. https://doi.org/10.1007/978-1-61779-992-1_10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ratzan W, Falco R, Salanga C, Salanga M, Horb ME (2017) Generation of a Xenopus laevis F1 albino J strain by genome editing and oocyte host-transfer. Dev Biol 426(2):188–193. https://doi.org/10.1016/j.ydbio.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  18. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kuhn R (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33(5):543–548. https://doi.org/10.1038/nbt.3198

    Article  CAS  PubMed  Google Scholar 

  19. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33(5):538–542. https://doi.org/10.1038/nbt.3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Renaud JB, Boix C, Charpentier M, De Cian A, Cochennec J, Duvernois-Berthet E, Perrouault L, Tesson L, Edouard J, Thinard R, Cherifi Y, Menoret S, Fontaniere S, de Croze N, Fraichard A, Sohm F, Anegon I, Concordet JP, Giovannangeli C (2016) Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep 14(9):2263–2272. https://doi.org/10.1016/j.celrep.2016.02.018

    Article  CAS  PubMed  Google Scholar 

  21. Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34(3):339–344. https://doi.org/10.1038/nbt.3481

    Article  CAS  PubMed  Google Scholar 

  22. Brinkman EK, Chen T, Amendola M, van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42(22):e168. https://doi.org/10.1093/nar/gku936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dehairs J, Talebi A, Cherifi Y, Swinnen JV (2016) CRISP-ID: decoding CRISPR mediated indels by sanger sequencing. Sci Rep 6:28973. https://doi.org/10.1038/srep28973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Wook Cha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tadjuidje, E., Cha, SW. (2018). How to Generate Non-Mosaic CRISPR/Cas9 Mediated Knock-In and Mutations in F0 Xenopus Through the Host-Transfer Technique. In: Vleminckx, K. (eds) Xenopus. Methods in Molecular Biology, vol 1865. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8784-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8784-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8783-2

  • Online ISBN: 978-1-4939-8784-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics