Skip to main content

Protocol for a High-Throughput Semiautomated Preparation for Filtered Synaptoneurosomes

  • Protocol
  • First Online:
Synaptosomes

Part of the book series: Neuromethods ((NM,volume 141))

Abstract

This book outlines various techniques for the isolation and application of synaptosomes for neuroscience research. One of the simplest techniques involves fractionation of synaptoneurosomes through filtration and low-speed centrifugation (Hollingsworth J Neurosci 5:2240–2253, 1985). This approach however is limited by two essential stages of the synaptoneurosome tissue preparation: the manual homogenization and filtrations are both laborious and slow. We have updated this traditional technique to include modern benchtop homogenizers and centrifugal filter units to simplify these labor-intensive stages, to make each stage faster and to reduce the variability between samples. Here we outline our protocol to produce filtered synaptoneurosomes that reduce sample preparation time, increase the amount of tissue recovered, and, most importantly, increase protein enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suzdak PD et al (1986) A selective imidazobenzodiazepine antagonist of ethanol in the rat. Science 234:1243–1247

    Article  CAS  PubMed  Google Scholar 

  2. Suzdak PD, Schwartz RD, Skolnick P, Paul SM (1986) Ethanol stimulates gamma-aminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes. Proc Natl Acad Sci U S A 83:4071–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Morrow AL, Pace JR, Purdy RH, Paul SM (1990) Characterization of steroid interactions with gamma-aminobutyric acid receptor-gated chloride ion channels: evidence for multiple steroid recognition sites. Mol Pharmacol 37:263–270

    CAS  PubMed  Google Scholar 

  4. Weiler IJ et al (1997) Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc Natl Acad Sci U S A 94:5395–5400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu L et al (1998) CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CaMKII mRNA at synapses. Neuron 21:1129–1139

    Google Scholar 

  6. Quinlan EM, Olstein DH, Bear MF (1999) Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc Natl Acad Sci U S A 96:12876–12880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Quinlan EM, Philpot BD, Huganir RL, Bear MF (1999) Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci 2:352–357

    Article  CAS  PubMed  Google Scholar 

  8. Hebb CO, Whittaker VP (1958) Intracellular distributions of acetylcholine and choline acetylase. J Physiol 142:187–196

    Google Scholar 

  9. Cohen RS, Blomberg F, Berzins K, Siekevitz P (1977) The structure of postsynaptic densities isolated from dog cerebral cortex: I. Overall morphology and protein composition. J Cell Biol 74:181–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hollingsworth EB et al (1985) Biochemical characterization of a filtered synaptoneurosome preparation from Guinea pig cerebral cortex: cyclic adenosine 3′:5′-monophosphate- generating systems, receptors, and enzymes. J Neurosci 5:2240–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weiler IJ, Greenough WT (1991) Potassium ion stimulation triggers protein translation in synaptoneurosomal polyribosomes. Mol Cell Neurosci 2:305

    Article  CAS  PubMed  Google Scholar 

  12. Heynen AJ, Quinlan EM, Bae DC, Bear MF (2000) Bidirectional, activity-dependent regulation of glutamate receptors in the adult hippocampus in vivo. Neuron 28:1–10

    Article  Google Scholar 

  13. Murphy KM, Tcharnaia L, Beshara SP, Jones DG (2012) Cortical development of AMPA receptor trafficking proteins. Front Mol Neurosci 5:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Murphy KM, Beston BR, Boley PM, Jones DG (2005) Development of human visual cortex: a balance between excitatory and inhibitory plasticity mechanisms. Dev Psychobiol 46:209–221

    Article  CAS  PubMed  Google Scholar 

  15. Beston BR, Jones DG, Murphy KM (2010) Experience-dependent changes in excitatory and inhibitory receptor subunit expression in visual cortex. Front Synaptic Neurosci 2:138

    Article  PubMed  PubMed Central  Google Scholar 

  16. Williams K, Irwin DA, Jones DG, Murphy KM (2010) Dramatic loss of Ube3A expression during aging of the mammalian cortex. Front Aging Neurosci 2:18

    PubMed  PubMed Central  Google Scholar 

  17. Pinto JGA, Hornby KR, Jones DG, Murphy KM (2010) Developmental changes in GABAergic mechanisms in human visual cortex across the lifespan. Front Cell Neurosci 4:16

    PubMed  PubMed Central  Google Scholar 

  18. Murphy KM, Balsor J, Beshara S, Siu C, Pinto JGA (2014) A high-throughput semi-automated preparation for filtered synaptoneurosomes. J Neurosci Methods 235:35–40

    Article  PubMed  Google Scholar 

  19. Pinto JGA, Jones DG, Williams CK, Murphy KM (2015) Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex. Front Neural Circuits 9:3

    Article  PubMed  PubMed Central  Google Scholar 

  20. Beshara S, Beston BR, Pinto JGA, Murphy KM (2015) Effects of fluoxetine and visual experience on glutamatergic and GABAergic synaptic proteins in adult rat visual cortex. eNeuro 2 ENEURO0126–15.2015. https://doi.org/10.1523/ENEURO.0126-15.2015

  21. Siu CR, Beshara SP, Jones DG, Murphy KM (2017) Development of glutamatergic proteins in human visual cortex across the lifespan. J Neurosci 37:6031–6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chandler LJ, Crews FT (1990) Calcium- versus G protein-mediated phosphoinositide. Hydrolysis in rat cerebral cortical synaptoneurosomes. J Neurochem 55:1022–1030

    Article  CAS  PubMed  Google Scholar 

  23. Villasana LE, Klann E, Tejada-Simon MV (2006) Rapid isolation of synaptoneurosomes and postsynaptic densities from adult mouse hippocampus. J Neurosci Methods 158:30–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang JW et al (2012) Synaptoneurosome micromethod for fractionation of mouse and human brain, and primary neuronal cultures. J Neurosci Methods 211:289–295

    Article  PubMed  Google Scholar 

  25. Titulaer MN, Ghijsen WE (1997) Synaptoneurosomes. A preparation for studying subhippocampal GABA receptor activity. Methods A Mol Biol 72:49–59

    Google Scholar 

Download references

Acknowledgements

This work was supported by NSERC Grant RGPIN-2015-06215 awarded to KM, and an OGS awarded to JB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn M. Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Balsor, J.L., Murphy, K.M. (2018). Protocol for a High-Throughput Semiautomated Preparation for Filtered Synaptoneurosomes. In: Murphy, K. (eds) Synaptosomes. Neuromethods, vol 141. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8739-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8739-9_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8738-2

  • Online ISBN: 978-1-4939-8739-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics