Skip to main content

Synthesis of DNA-Based Nanowires

  • Protocol
  • First Online:
DNA Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1811))

Abstract

Here we describe novel enzymatic procedures for the production of long (from tens of nanometers to microns) double-stranded poly(dG)–poly(dC), triple-helical poly(dG)–poly(dG)–poly(dC), and quadruple-helical G4 DNA. All these molecules are uniform in size and possess improved mechanical and electrical properties with respect to a canonical random sequence double-stranded DNA. They can potentially be used as elements in nanoelectronic devices and circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porath D, Bezryadin A, de Vries S, Dekker C (2000) Direct measurement of electrical transport through DNA molecules. Nature 403:635–638. https://doi.org/10.1038/35001029

    Article  CAS  PubMed  Google Scholar 

  2. Hwang JSK, Kong J, Ahn DG, Lee S, Ahn DJS, Hwang W (2002) Electrical transport through 60 base pairs of poly(dG)-poly(dC) DNA molecules. Appl Phys Lett 81:1134–1136. https://doi.org/10.1063/1.1498862

    Article  CAS  Google Scholar 

  3. Hennig D, Starikov EB, Archilla JFR, Palmero F (2004) Charge transport in poly(dG)-poly(dC) and poly(dA) poly(dT) DNA polymers. J Biol Phys 30:227–238

    Article  CAS  Google Scholar 

  4. Yi J (2003) Conduction of DNA molecules: a charge-ladder model. Phys Rev B 68:193103. https://doi.org/10.1023/B:JOBP.0000046721.92623.a9

    Article  Google Scholar 

  5. Lee H-Y, Tanaka H, Otsuka Y, Yoo K-H, Lee J-O, Kawai T (2002) Control of electrical conduction in DNA using oxygen hole doping. Appl Phys Lett 80:1670–1672. https://doi.org/10.1063/1.1456972

    Article  CAS  Google Scholar 

  6. Yoo K-H, Ha DH, Lee J-O, Park JW, Kim J, Kim JJ, Lee H-Y, Kawai T, Choi H-Y (2001) Electrical conduction through poly(dA)–poly(dT) and poly(dG)–poly(dC)DNAmolecules. Phys Rev Lett 87:198102. https://doi.org/10.1103/PhysRevLett.87.198102

    Article  CAS  PubMed  Google Scholar 

  7. Kotlyar AB, Borovok N, Molotsky T, Fadeev L, Gozin M (2005) In vitro synthesis of uniform poly(dG)-poly(dC) by Klenow exo−− fragment of polymerase I. Nucleic Acids Res 33:525–535. https://doi.org/10.1093/nar/gki178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nuzzo RG, Allara DL (1983) Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 105:4481–4483. https://doi.org/10.1021/ja00351a063

    Article  CAS  Google Scholar 

  9. Sellers H, Ulman A, Shnidman Y, Eilerss JE (1993) Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. J Am Chem Soc 115:9389–9401. https://doi.org/10.1021/ja00074a004

    Article  CAS  Google Scholar 

  10. Hegner M, Wagner P, Semenza G (1993) Immobilizing DNA on gold via thiol modification for atomic force microscopy imaging in buffer solutions. FEBS Lett 336:452–456

    Article  CAS  Google Scholar 

  11. Frank-Kamenetskii MD, Mirkin SM (1995) Triplex DNA structures. Annu Rev Biochem 64:65–95. https://doi.org/10.1146/annurev.bi.64.070195.000433

    Article  CAS  PubMed  Google Scholar 

  12. Sun JS, Garestier T, Helene C (1996) Oligonucleotide directed triple helix formation. Curr Opin Struct Biol 6:327–333

    Article  CAS  Google Scholar 

  13. Radhakrishnan I, Patel DJ (1994) DNA triplexes: solution structures, hydration sites, energetics, interactions, and function. Biochemistry 33:11405–11416

    Article  CAS  Google Scholar 

  14. Kotlyar AB, Borovok N, Molotsky T, Klinov D, Dwir B, Kapon E (2005) Synthesis of novel poly(dG)-poly(dG)-poly(dC) triplex structure by Klenow exo−− fragment of DNA polymerase I. Nucleic Acids Res 33:6515–6521. https://doi.org/10.1093/nar/gki963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kerwin SM (2000) G-Quadruplex DNA as a target for drug design. Curr Pharm Des 6:441–478. https://doi.org/10.2174/1381612003400849

    Article  CAS  PubMed  Google Scholar 

  16. Davis JT (2004) G-quartets 40 years later: from 50-GMP to molecular biology and supramolecular chemistry. Angew Chem Int Ed 43:668–698. https://doi.org/10.1002/anie.200300589

    Article  CAS  Google Scholar 

  17. Keniry MA (2001) Quadruplex structures in nucleic acids. Biopolymers 56:123–146. https://doi.org/10.1002/1097-0282(2000/2001)56:3<123::AID-BIP10010>3.0.CO;2-3

    Article  CAS  Google Scholar 

  18. Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417:876–880. https://doi.org/10.1038/nature755

    Article  CAS  PubMed  Google Scholar 

  19. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34:5402–5415. https://doi.org/10.1093/nar/gkl655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sen D, Gilbert W (1992) Novel DNA superstructures formed by telomere-like oligomers. Biochemistry 31:65–70

    Article  CAS  Google Scholar 

  21. Marsh TC, Vesenka J, Henderson E (1995) A new DNA nanostructure the G-wire imaged by scanning probe microscopy. Nucleic Acids Res 23:696–700

    Article  CAS  Google Scholar 

  22. Kotlyar AB, Borovok N, Molotsky T, Cohen H, Shapir E, Porath D (2005) Long monomolecular guanine-based nanowires. Adv Mater 17:1901–1905. https://doi.org/10.1002/adma.200401997

    Article  CAS  Google Scholar 

  23. Borovok N, Molotsky T, Ghabboun J, Porath D, Kotlyar A (2008) Efficient procedure of preparation and properties of long uniform G4-DNA nanowires. Anal Biochem 374:71–78. https://doi.org/10.1016/j.ab.2007.10.017

    Article  CAS  PubMed  Google Scholar 

  24. Cohen H, Sapir T, Borovok N, Molotsky T, Di Felice R, Kotlyar AB, Porath D (2007) Polarizability of G4-DNA observed by electrostatic force microscopy measurements. Nano Lett 7:981–986. https://doi.org/10.1021/nl070013b

    Article  CAS  PubMed  Google Scholar 

  25. Livshits GI, Stern A, Rotem D, Borovok N, Eidelshtein G, Migliore A, Penzo E, Wind SJ, Di Felice R, Skourtis SS, Cuevas JC, Gurevich L, Kotlyar AB, Porath D (2014) Long-range charge transport in single G4-DNA molecules. Nat Nanotechnol 9:1040–1046. https://doi.org/10.1038/nnano.2014.246

    Article  CAS  PubMed  Google Scholar 

  26. Livshits GI, Ghabboun J, Borovok N, Kotlyar AB, Porath D (2014) Comparative electrostatic force microscopy of tetra-and intra-molecular G4-DNA. Adv Mater 26:4981–4985. https://doi.org/10.1002/adma.201401010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Israel Science Foundation, 1589/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kotlyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kotlyar, A. (2018). Synthesis of DNA-Based Nanowires. In: Zuccheri, G. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 1811. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8582-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8582-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8581-4

  • Online ISBN: 978-1-4939-8582-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics