Skip to main content

Methods of Study of Neuron Structural Heterogeneity: Flow Cytometry vs. Laser Interferometry

  • Protocol
  • First Online:
Cellular Heterogeneity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1745))

Abstract

Neuronal cells are probably the less studied cells regarding their heterogeneity on a single cell or population levels. One of the main problems of studying of individual neurons is the presence of long processes (axons) on differentiated adult neurons that hamper their isolation without significant damage to the cells. Therefore, the most common method to study neuronal cells is immunofluorescent microscopy of sections of the brain, which remains poorly quantitative and allows analyzing a small number of fixed cells. Also, immunofluorescent microscopy has a number of staining artifacts since histology section has high level of autofluorescence and non-specific binding of fluorescent probes. Alternative methods that could overcome disadvantages of immunofluorescent histology include flow cytometry, scanning cytometry, and laser interferometry. Flow cytometry and, to some extent of degree, scanning cytometry allow performing analysis of multiple markers with a low level of non-specific background and very robust statistics. Laser interferometry allows studies intact, alive neurons without staining. Limitations and advantages of these methods are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang SS-H, Shultz JR, Burish MJ, Harrison KH, Hof PR, Towns LC et al (2008) Functional trade-offs in white matter axonal scaling. J Neurosci 28:4047–4056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martínez M, Quiroga NY, Castellanos JE, Hurtado H, Hurtado H (2000) Subpoblaciones neuronales presentes en el ganglio de la raíz dorsal. Biomedica 20:248–260

    Article  Google Scholar 

  3. Mejias JF, Longtin A (2014) Differential effects of excitatory and inhibitory heterogeneity on the gain and asynchronous state of sparse cortical networks. Front Comput Neurosci 8:107. https://doi.org/10.3389/fncom.2014.00107

    PubMed  PubMed Central  Google Scholar 

  4. Pennartz CMA, De Jeu MTG, Geurtsen AMS, Sluiter AA, Hermes ML (1998) Electrophysiological and morphological heterogeneity of neurons in slices of rat suprachiasmatic nucleus. J Physiol 506:775–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baroni F, Mazzoni A (2014) Heterogeneity of heterogeneities in neuronal networks. Front Comput Neurosci 8:161. https://doi.org/10.3389/fncom.2014.00161

    Article  PubMed  PubMed Central  Google Scholar 

  6. Givan AL (2011) Flow cytometry: an introduction. Methods Mol Biol 699:1–29. https://doi.org/10.1007/978-1-61737-950-5_1

    Article  CAS  PubMed  Google Scholar 

  7. Di Nicola M, Siena S, Bregni M, Peccatori F, Magni M, Ravagnani F et al (1993) Quantization of CD34+ peripheral blood hematopoietic progenitors for autografting in cancer patients. Int J Artif Organs 16(Suppl 5):80–82

    PubMed  Google Scholar 

  8. Sack U, Scheibe R, Wötzel M, Hammerschmidt S, Kuhn H, Emmrich F et al (2006) Multiplex analysis of cytokines in exhaled breath condensate. Cytometry A 69A:169–172

    Article  CAS  Google Scholar 

  9. Stratieva-Taneeva PA, Khaidukov SV, Kovalenko VA, Nazimov IV, Samokhvalova LV, Nesmeyanov VA (1993) Bispecific monoclonal antibodies to human interleukin 2 and horseradish peroxidase. Hybridoma 12:271–284

    Article  CAS  PubMed  Google Scholar 

  10. Shapiro HM (2003) Practical flow cytometry. Wiley, New York

    Book  Google Scholar 

  11. Biggio M, Storace M, Mattia M (2013) Non-instantaneous synaptic transmission in spiking neuron networks and equivalence with delay distribution. BMC Neurosci 14:P267

    PubMed Central  Google Scholar 

  12. Somers D, Panneton WM (1984) Heterogeneity of neurons in the subnucleus interpolaris of the cat. Brain Res 309:335–340

    Article  CAS  PubMed  Google Scholar 

  13. Luider J, Cyfra M, Johnson P, Auer I (2004) Impact of the new Beckman Coulter cytomics FC 500 5-Color flow cytometer on a regional flow cytometry clinical laboratory service. Lab Hematol 10:102–108

    Article  CAS  PubMed  Google Scholar 

  14. Fritschy J-M (2015) Significance of GABA(A) receptor heterogeneity: clues from developing neurons. Adv Pharmacol 73:13–39. https://doi.org/10.1016/bs.apha.2014.11.006

    Article  PubMed  Google Scholar 

  15. Walsh JJ, Han MH (2014) The heterogeneity of ventral tegmental area neurons: projection functions in a mood-related context. Neuroscience 282:101–108. https://doi.org/10.1016/j.neuroscience.2014.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brazhe (Ulyanova) NA, Erokhova LA, Churin AA, Maksimov GV (2005) The relation of different-scale membrane processes under nitric oxide influence. J Biol Phys 31:533–546. https://doi.org/10.1007/s10867-005-2043-1

    Article  Google Scholar 

  17. Tychinsky VP, Kretushev AV, Vyshenskaya TV, Tikhonov AN (2005) Coherent phase microscopy in cell biology: visualization of metabolic states. Biochim Biophys Acta Bioenerg 1708:362–366

    Article  CAS  Google Scholar 

  18. Brazhe AR, Brazhe NA, Maksimov GV, Ignatyev PS, Rubin AB, Mosekilde E et al (2008) Phase-modulation laser interference microscopy: an advance in cell imaging and dynamics study. J Biomed Opt 13:0340004. https://doi.org/10.1117/1.2937213

    Article  Google Scholar 

  19. Dobrunz LE, Stevens CF (1997) Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18:995–1008

    Article  CAS  PubMed  Google Scholar 

  20. Cembrowski MS, Bachman JL, Wang L, Sugino K, Shields BC, Spruston N (2016) Spatial gene-expression gradients underlie prominent heterogeneity of CA1 pyramidal neurons. Neuron 89:351–368. https://doi.org/10.1016/j.neuron.2015.12.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by Research Grant Council-General Research Fund grant Ref. No. 14113316 (Hong Kong) to E.D.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene D. Ponomarev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kopeikina, E., Dukhinova, M., Ponomarev, E.D. (2018). Methods of Study of Neuron Structural Heterogeneity: Flow Cytometry vs. Laser Interferometry. In: Barteneva, N., Vorobjev, I. (eds) Cellular Heterogeneity. Methods in Molecular Biology, vol 1745. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7680-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7680-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7679-9

  • Online ISBN: 978-1-4939-7680-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics