Skip to main content

An In Vitro Oxygen–Glucose Deprivation Model for Studying Ischemia–Reperfusion Injury of Neuronal Cells

  • Protocol
  • First Online:
Traumatic and Ischemic Injury

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1717))

Abstract

Ischemia–reperfusion syndromes of the heart and brain are the leading cause of death and long-term disability worldwide. Development of effective treatments for myocardial infarction, stroke, cardiac arrest and their sequelae requires preclinical models that replicate specific features of ischemia–reperfusion. The complexities of intact animals, including the integrated function of organ systems, autonomic innervation and endocrine factors, often preclude detailed study of specific components of ischemia–reperfusion injury cascades. Ischemia represents the interruption of metabolic fuel and oxygen delivery to support cellular oxidative metabolism; reintroduction of oxygen upon reperfusion of ischemic tissue triggers oxidative stress which initiates the reperfusion injury cascade culminating in injury and death of cells and tissues. Thus, cultured cells subjected to hypoxia, fuel deprivation and reoxygenation replicate the cardinal features of ischemia–reperfusion, while accommodating interventions such as siRNA suppression of specific genes and pharmacological activation or inhibition of signaling cascades that are not feasible in more complex preparations, especially intact animals. This chapter describes an in vitro OGD-reoxygenation cell culture model, an excellent preparation to examine the cellular mechanisms mediating ischemia–reperfusion injury and/or cytoprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ryou MG, Choudhury GR, Li W, Winters A, Yuan F, Liu R, Yang SH (2015) Methylene blue-induced neuronal protective mechanism against hypoxia-reoxygenation stress. Neuroscience 301:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M, Eckle T (2012) Myocardial ischemia reperfusion injury: from basic science to clinical bedside. Semin Cardiothorac Vasc Anesth 16(3):123–132

    Article  PubMed  PubMed Central  Google Scholar 

  3. Green AR (2008) Pharmacological approaches to acute ischaemic stroke: reperfusion certainly, neuroprotection possibly. Br J Pharmacol 153(Suppl 1):S325–S338

    CAS  PubMed  Google Scholar 

  4. Xie L, Li W, Winters A, Yuan F, Jin K, Yang S (2013) Methylene blue induces macroautophagy through 5′ adenosine monophosphate-activated protein kinase pathway to protect neurons from serum deprivation. Front Cell Neurosci 7:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choi JR, Pingguan-Murphy B, Wan Abas WA, Yong KW, Poon CT, Noor Azmi MA, Omar SZ, Chua KH, Xu F, Wan Safwani WK (2015) In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis. PLoS One 10(1):e0115034

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang C, Jiang L, Zhang H, Shimoda LA, DeBerardinis RJ, Semenza GL (2014) Analysis of hypoxia-induced metabolic reprogramming. Methods Enzymol 542:425–455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by UNTHSC intramural research grant RI6148 and grant NS076975 from National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-gwi Ryou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ryou, Mg., Mallet, R.T. (2018). An In Vitro Oxygen–Glucose Deprivation Model for Studying Ischemia–Reperfusion Injury of Neuronal Cells. In: Tharakan, B. (eds) Traumatic and Ischemic Injury. Methods in Molecular Biology, vol 1717. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7526-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7526-6_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7524-2

  • Online ISBN: 978-1-4939-7526-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics