Skip to main content

Mouse Injury Model of Polytrauma and Shock

  • Protocol
  • First Online:
Traumatic and Ischemic Injury

Abstract

Severe injury and shock remain major sources of morbidity and mortality worldwide. Immunologic dysregulation following trauma contributes to these poor outcomes. Few, if any, therapeutic interventions have benefited these patients, and this is due to our limited understanding of the host response to injury and shock. The Food and Drug Administration requires preclinical animal studies prior to any interventional trials in humans; thus, animal models of injury and shock will remain the mainstay for trauma research. However, adequate animal models that reflect the severe response to trauma in both the acute and subacute phases have been limited. Here we describe a novel murine model of polytrauma and shock that combines hemorrhagic shock, cecectomy, long bone fracture, and soft-tissue damage. This model produces an equivalent Injury Severity Score associated with adverse outcomes in humans, and may better recapitulate the human leukocyte, cytokine, transcriptomic, and overall inflammatory response following injury and hemorrhagic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pfeifer R, Tarkin IS, Rocos B, Pape HC (2009) Patterns of mortality and causes of death in polytrauma patients—has anything changed? Injury 40:907–911

    Article  PubMed  Google Scholar 

  2. Probst C, Pape HC, Hildebrand F, Regel G, Mahlke L, Giannoudis P, Krettek C, Grotz MR (2009) 30 years of polytrauma care: an analysis of the change in strategies and results of 4849 cases treated at a single institution. Injury 40:77–83

    Article  PubMed  Google Scholar 

  3. Probst C, Zelle BA, Sittaro NA, Lohse R, Krettek C, Pape HC (2009) Late death after multiple severe trauma: when does it occur and what are the causes? J Trauma 66(4):1212–1217

    Article  PubMed  Google Scholar 

  4. Sasser SM, Varghese M, Joshipura M, Kellermann A (2006) Preventing death and disability through the timely provision of prehospital trauma care. Bull World Health Organ 84:507

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, McKinley BA, Moldawer LL, Moore FA (2012) Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg 72:1491–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Robertson CM, Coopersmith CM (2006) The systemic inflammatory response syndrome. Microbes Infect 8:1382–1389

    Article  CAS  PubMed  Google Scholar 

  7. Ward NS, Casserly B, Ayala A (2008) The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med 29:617–625. viii

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rosenthal MD, Moore FA (2015) Persistent inflammatory, immunosuppressed, catabolic syndrome (PICS): a new phenotype of multiple organ failure. J Adv Nutr Hum Metab 1:e874

    Google Scholar 

  9. Mira JC, Gentile LF, Mathias BJ, Efron PA, Brakenridge SC, Mohr AM, Moore FA, Moldawer LL (2017) Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome. Crit Care Med 45:253–262

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mathias B, Delmas AL, Ozrazgat-Baslanti T, Vanzant EL, Szpila BE, Mohr AM, Moore FA, Brakenridge SC, Brumback BA, Moldawer LL et al (2016) Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Ann Surg 265:827–834

    Article  Google Scholar 

  11. Stahel PF, Smith WR, Moore EE (2007) Role of biological modifiers regulating the immune response after trauma. Injury 38:1409–1422

    Article  PubMed  Google Scholar 

  12. Artenstein AW, Higgins TL, Opal SM (2013) Sepsis and scientific revolutions. Crit Care Med 41:2770–2772

    Article  PubMed  Google Scholar 

  13. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110:3507–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takao K, Miyakawa T (2015) Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 112:1167–1172

    Article  CAS  PubMed  Google Scholar 

  15. Deitch EA (1998) Animal models of sepsis and shock: a review and lessons learned. Shock 9:1–11

    Article  CAS  PubMed  Google Scholar 

  16. Efron PA, Mohr AM, Moore FA, Moldawer LL (2015) The future of murine sepsis and trauma research models. J Leukoc Biol 98:945–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pratt D (1980) Alternatives to pain in experiments on animals. Argus Archives, New York

    Google Scholar 

  18. Tsukamoto T, Pape HC (2009) Animal models for trauma research: what are the options? Shock 31:3–10

    Article  PubMed  Google Scholar 

  19. Frink M, Andruszkow H, Zeckey C, Krettek C, Hildebrand F (2011) Experimental trauma models, an update. J Biomed Biotechnol 2011:797383

    Article  PubMed  PubMed Central  Google Scholar 

  20. Noble RL, Collip JB (1942) A quantitative method for the production of experimental traumatic shock without haemorrhage in unanaesthetized animals. Q J Exp Physiol 31:187–199

    Article  Google Scholar 

  21. Gill R, Ruan X, Menzel CL, Namkoong S, Loughran P, Hackam DJ, Billiar TR (2011) Systemic inflammation and liver injury following hemorrhagic shock and peripheral tissue trauma involve functional TLR9 signaling on bone marrow-derived cells and parenchymal cells. Shock 35:164–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kang SC, Matsutani T, Choudhry MA, Schwacha MG, Rue LW, Bland KI, Chaudry IH (2004) Are the immune responses different in middle-aged and young mice following bone fracture, tissue trauma and hemorrhage? Cytokine 26:223–230

    Article  CAS  PubMed  Google Scholar 

  23. Matsutani T, Kang SC, Miyashita M, Sasajima K, Choudhry MA, Bland KI, Chaudry IH (2007) Young and middle-age associated differences in cytokeratin expression after bone fracture, tissue trauma, and hemorrhage. Am J Surg 193:61–68

    Article  CAS  PubMed  Google Scholar 

  24. Matsutani T, Kang SC, Miyashita M, Sasajima K, Choudhry MA, Bland KI, Chaudry IH (2007) Liver cytokine production and ICAM-1 expression following bone fracture, tissue trauma, and hemorrhage in middle-aged mice. Am J Physiol Gastrointest Liver Physiol 292:G268–G274

    Article  CAS  PubMed  Google Scholar 

  25. Venet F, Chung CS, Huang X, Lomas-Neira J, Chen Y, Ayala A (2009) Lymphocytes in the development of lung inflammation: a role for regulatory CD4+ T cells in indirect pulmonary lung injury. J Immunol 183:3472–3480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wichmann MW, Ayala A, Chaudry IH (1998) Severe depression of host immune functions following closed-bone fracture, soft-tissue trauma, and hemorrhagic shock. Crit Care Med 26:1372–1378

    Article  CAS  PubMed  Google Scholar 

  27. Wang P, Ba ZF, Burkhardt J, Chaudry IH (1993) Trauma-hemorrhage and resuscitation in the mouse—effects on cardiac-output and organ blood-flow. Am J Physiol 264:H1166–H1173

    Article  CAS  PubMed  Google Scholar 

  28. Hollenberg SM (2005) Mouse models of resuscitated shock. Shock 24(Suppl 1):58–63

    Article  PubMed  Google Scholar 

  29. Marshall JC, Deitch E, Moldawer LL, Opal S, Redl H, van der Poll T (2005) Preclinical models of shock and sepsis: what can they tell us? Shock 24(Suppl 1):1–6

    Article  PubMed  Google Scholar 

  30. Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, Hayden DL, Hennessy L, Moore EE, Minei JP et al (2011) A genomic storm in critically injured humans. J Exp Med 208:2581–2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gentile LF, Nacionales DC, Lopez MC, Vanzant E, Cuenca A, Cuenca AG, Ungaro R, Baslanti TO, McKinley BA, Bihorac A et al (2014) A better understanding of why murine models of trauma do not recapitulate the human syndrome. Crit Care Med 42:1406–1413

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, Sandstrom R, Ma Z, Davis C, Pope BD et al (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature 515:355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cuschieri J, Johnson JL, Sperry J, West MA, Moore EE, Minei JP, Bankey PE, Nathens AB, Cuenca AG, Efron PA et al (2012) Benchmarking outcomes in the critically injured trauma patient and the effect of implementing standard operating procedures. Ann Surg 255:993–999

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chute CG, Ullman-Cullere M, Wood GM, Lin SM, He M, Pathak J (2013) Some experiences and opportunities for big data in translational research. Genet Med 15:802–809

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kannry JL, Williams MS (2013) Integration of genomics into the electronic health record: mapping terra incognita. Genet Med 15:757–760

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dyson A, Singer M (2009) Animal models of sepsis: why does preclinical efficacy fail to translate to the clinical setting? Crit Care Med 37:S30–S37

    Article  PubMed  Google Scholar 

  37. Keel M, Trentz O (2005) Pathophysiology of polytrauma. Injury 36:691–709

    Article  PubMed  Google Scholar 

  38. Gauthier C, Griffin G (2005) Using animals in research, testing and teaching. Rev Sci Tech 24:735–745

    Article  CAS  PubMed  Google Scholar 

  39. Gentile LF, Nacionales DC, Cuenca AG, Armbruster M, Ungaro RF, Abouhamze AS, Lopez C, Baker HV, Moore FA, Ang DN et al (2013) Identification and description of a novel murine model for polytrauma and shock. Crit Care Med 41:1075–1085

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mira JC, Szpila BE, Nacionales DC, Lopez MC, Gentile LF, Mathias BJ, Vanzant EL, Ungaro R, Holden D, Rosenthal MD et al (2016) Patterns of gene expression among murine models of hemorrhagic shock/trauma and sepsis. Physiol Genomics 48:135–144

    Article  CAS  PubMed  Google Scholar 

  41. Baker SP, O’Neill B, Haddon W Jr, Long WB (1974) The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma 14:187–196

    Article  CAS  PubMed  Google Scholar 

  42. Ayala A, Chung CS, Lomas JL, Song GY, Doughty LA, Gregory SH, Cioffi WG, LeBlanc BW, Reichner J, Simms HH et al (2002) Shock-induced neutrophil mediated priming for acute lung injury in mice: divergent effects of TLR-4 and TLR-4/FasL deficiency. Am J Pathol 161:2283–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lomas JL, Chung CS, Grutkoski PS, LeBlanc BW, Lavigne L, Reichner J, Gregory SH, Doughty LA, Cioffi WG, Ayala A (2003) Differential effects of macrophage inflammatory chemokine-2 and keratinocyte-derived chemokine on hemorrhage-induced neutrophil priming for lung inflammation: assessment by adoptive cells transfer in mice. Shock 19:358–365

    Article  CAS  PubMed  Google Scholar 

  44. Council NR (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies Press, Washington, DC

    Google Scholar 

  45. Cuenca AG, Delano MJ, Kelly-Scumpia KM, Moldawer LL, Efron PA (2010) Cecal ligation and puncture. In: Coligan JE et al (eds) Current protocols in immunology, Chapter 19, Unit 19 13. Wiley, New York

    Google Scholar 

  46. Stephan RN, Kuppr TS, Geha AS, Baue AE, Chaudry IH (1987) Hemorrhage without tissue trauma produces immunosuppression and enhances susceptibility to sepsis. Arch Surg 122:62–68

    Article  CAS  PubMed  Google Scholar 

  47. Monaghan SF, Thakkar RK, Heffernan DS, Huang X, Chung CS, Lomas-Neira J, Cioffi WG, Ayala A (2012) Mechanisms of indirect acute lung injury a novel role for the coinhibitory receptor, programmed death-1. Ann Surg 255:158–164

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bible LE, Pasupuleti LV, Gore AV, Sifri ZC, Kannan KB, Mohr AM (2015) Chronic restraint stress after injury and shock is associated with persistent anemia despite prolonged elevation in erythropoietin levels. J Trauma Acute Care Surg 79:91–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Darwiche SS, Kobbe P, Pfeifer R, Kohut L, Pape HC, Billiar T (2011) Pseudofracture: an acute peripheral tissue trauma model. J Vis Exp (50):2074

    Google Scholar 

  50. Schwulst SJ, Trahanas DM, Saber R, Perlman H (2013) Traumatic brain injury-induced alterations in peripheral immunity. J Trauma Acute Care 75:780–788

    Article  CAS  Google Scholar 

  51. Lpaktchi K, Mattar A, Niederbichler AD, Kim J, Hoesel LM, Hemmila MR, GL S, Remick DG, Wang SC, Arbabi S (2007) Attenuating burn wound inflammation improves pulmonary function and survival in a burn-pneumonia model. Crit Care Med 35:2139–2144

    Article  Google Scholar 

Download references

Acknowledgment

J.C.M., T.L.M., and B.M. were supported by a training grant in burn and trauma research from the National Institute of General Medical Sciences (NIGMS) (T32 GM-008721). This work was also supported by NIH Grants R01 GM-040586 and R01 GM-081923, awarded by the NIGMS. A.M.M. was supported by R01 GM-105893. In addition, P.A.E. was supported by P30 AG-028740 from the NIH National Institute on Aging and R01 GM113945 (NIGMS). Finally, P.A.E. and L.L.M. were supported by P50 GM-111152 (NIGMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip A. Efron .

Editor information

Editors and Affiliations

1 Electronic Polytrauma Supplementary Material

Image 1

Femoral artery cannulation (TIFF 1138 kb)

Image 2

Slowly aspirate blood to maintain MAP 30-40 (TIFF 2861 kb)

Image 3

Long bone fracture (TIFF 874 kb)

Image 4

Bone realignment (TIFF 1363 kb)

Image 5

Cecal clamp and ligation (TIFF 1799 kb)

Image 6

Cecum removal (TIFF 2012 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mira, J.C. et al. (2018). Mouse Injury Model of Polytrauma and Shock. In: Tharakan, B. (eds) Traumatic and Ischemic Injury. Methods in Molecular Biology, vol 1717. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7526-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7526-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7524-2

  • Online ISBN: 978-1-4939-7526-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics