Skip to main content

Nucleotide Exchange Factors for Hsp70 Chaperones

  • Protocol
  • First Online:
Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1709))

Abstract

The ATPase cycle of Hsp70 chaperones controls their transient association with substrates and thus governs their function in protein folding. Nucleotide exchange factors (NEFs) accelerate ADP release from Hsp70, which results in rebinding of ATP and release of the substrate, thereby regulating the lifetime of the Hsp70-substrate complex. This chapter describes several methods suitable to study NEFs of Hsp70 chaperones. On the one hand, steady-state ATPase assays provide information on how the NEF influences progression of the Hsp70 through the entire ATPase cycle. On the other hand, nucleotide release can be measured directly using labeled nucleotides, which enables identification and further characterization of NEFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kityk R, Kopp J, Sinning I, Mayer MP (2012) Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol Cell 48:863–874

    Article  CAS  PubMed  Google Scholar 

  3. Qi R, Sarbeng EB, Liu Q, Le KQ, Xu X, Xu H, Yang J, Wong JL, Vorvis C, Hendrickson WA, Zhou L, Liu Q (2013) Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Nat Struct Mol Biol 20:900–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harrison CJ, Hayer-Hartl M, Di Liberto M, Hartl F, Kuriyan J (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276:431–435

    Article  CAS  PubMed  Google Scholar 

  5. Sondermann H, Scheufler C, Schneider C, Höhfeld J, Hartl FU, Moarefi I (2001) Structure of a bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291:1553–1557

    Article  CAS  PubMed  Google Scholar 

  6. Shomura Y, Dragovic Z, Chang H-C, Tzvetkov N, Young JC, Brodsky JL, Guerriero V, Hartl FU, Bracher A (2005) Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol Cell 17:367–379

    CAS  PubMed  Google Scholar 

  7. Polier S, Dragovic Z, Hartl FU, Bracher A (2008) Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133:1068–1079

    Article  CAS  PubMed  Google Scholar 

  8. Schuermann JP, Jiang J, Cuellar J, Llorca O, Wang L, Gimenez LE, Jin S, Taylor AB, Demeler B, Morano KA, Hart PJ, Valpuesta JM, Lafer EM, Sousa R (2008) Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol Cell 31:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Andréasson C, Fiaux J, Rampelt H, Druffel-Augustin S, Bukau B (2008) Insights into the structural dynamics of the Hsp110-Hsp70 interaction reveal the mechanism for nucleotide exchange activity. Proc Natl Acad Sci 105:16519–16524

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xu Z, Page RC, Gomes MM, Kohli E, Nix JC, Herr AB, Patterson C, Misra S (2008) Structural basis of nucleotide exchange and client binding by the Hsp70 cochaperone Bag2. Nat Struct Mol Biol 15:1309–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Briknarová K, Takayama S, Brive L (2001) Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein. Nat Struct Mol Biol 8(4):349

    Article  Google Scholar 

  12. Briknarová K, Takayama S, Homma S, Baker K, Cabezas E, Hoyt DW, Li Z, Satterthwait AC, Ely KR (2002) BAG4/SODD protein contains a short BAG domain. J Biol Chem 277:31172–31178

    Article  PubMed  Google Scholar 

  13. Liberek K, Marszalek J, Ang D, Georgopoulos C (1991) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Aca Sci U S A 88(7):2874–2878

    Article  CAS  Google Scholar 

  14. McCarty JS, Buchberger A, Reinstein J, Bukau B (1995) The role of ATP in the functional cycle of the DnaK chaperone system. J Mol Biol 249:126–137

    Article  CAS  PubMed  Google Scholar 

  15. Laufen T, Mayer MP, Beisel C, Klostermeier D, Mogk A, Reinstein J, Bukau B (1999) Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc Natl Acad Sci U S A 96:5452–5457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cyr DM, Douglas MG (1994) Differential regulation of Hsp70 subfamilies by the eukaryotic DnaJ homologue YDJ1. J Biol Chem 269:9798–9804

    CAS  PubMed  Google Scholar 

  17. Jiang RF, Greener T, Barouch W, Greene L, Eisenberg E (1997) Interaction of auxilin with the molecular chaperone, Hsc70. J Biol Chem 272:6141–6145

    Article  CAS  PubMed  Google Scholar 

  18. Gässler CS, Wiederkehr T, Brehmer D, Bukau B, Mayer MP (2001) Bag-1M accelerates nucleotide release for human Hsc70 and Hsp70 and can act concentration-dependent as positive and negative cofactor. J Biol Chem 276:32538–32544

    Article  PubMed  Google Scholar 

  19. Barouch W, Prasad K, Greene L, Eisenberg E (1997) Auxilin-induced interaction of the molecular chaperone Hsc70 with clathrin baskets. Biochemistry 36:4303–4308

    Article  CAS  PubMed  Google Scholar 

  20. Packschies L, Theyssen H, Buchberger A, Bukau B, Goody RS, Reinstein J (1997) GrpE accelerates nucleotide exchange of the molecular chaperone DnaK with an associative displacement mechanism. Biochemistry 36:3417–3422

    Article  CAS  PubMed  Google Scholar 

  21. Raviol H, Sadlish H, Rodriguez F, Mayer MP, Bukau B (2006) Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J 25:2510–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raynes DA, Guerriero V (1998) Inhibition of Hsp70 ATPase activity and protein renaturation by a novel Hsp70-binding protein. J Biol Chem 273:32883–32888

    Article  CAS  PubMed  Google Scholar 

  23. Kabani M, Beckerich J-M, Brodsky JL (2002) Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p. Mol Cell Biol 22:4677–4689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ali JA, Jackson AP, Howells AJ, Maxwell A (1993) The 43-kilodalton N-terminal fragment of the DNA gyrase B protein hydrolyzes ATP and binds coumarin drugs. Biochemistry 32:2717–2724

    Article  CAS  PubMed  Google Scholar 

  25. O'Brien MC, Flaherty KM, McKay DB (1996) Lysine 71 of the chaperone protein Hsc70 is essential for ATP hydrolysis. J Biol Chem 271:15874–15878

    Article  PubMed  Google Scholar 

  26. Ha JH, McKay DB (1994) ATPase kinetics of recombinant bovine 70 kDa heat shock cognate protein and its amino-terminal ATPase domain. Biochemistry 33:14625–14635

    Article  CAS  PubMed  Google Scholar 

  27. Theyssen H, Schuster HP, Packschies L, Bukau B, Reinstein J (1996) The second step of ATP binding to DnaK induces peptide release. J Mol Biol 263:657–670

    Article  CAS  PubMed  Google Scholar 

  28. Leskovar A, Reinstein J (2008) Photophysical properties of popular fluorescent adenosine nucleotide analogs used in enzyme mechanism probing. Arch Biochem Biophys 473:16–24

    Article  CAS  PubMed  Google Scholar 

  29. O'Brien MC, McKay DB (1995) How potassium affects the activity of the molecular chaperone Hsc70. I. Potassium is required for optimal ATPase activity. J Biol Chem 270:2247–2250

    Article  PubMed  Google Scholar 

  30. Wilbanks SM, McKay DB (1995) How potassium affects the activity of the molecular chaperone Hsc70. II. Potassium binds specifically in the ATPase active site. J Biol Chem 270:2251–2257

    Article  CAS  PubMed  Google Scholar 

  31. O'Brien MC, McKay DB (1993) Threonine 204 of the chaperone protein Hsc70 influences the structure of the active site, but is not essential for ATP hydrolysis. J Biol Chem 268:24323–24329

    PubMed  Google Scholar 

  32. Buchberger A, Valencia A, McMacken R, Sander C, Bukau B (1994) The chaperone function of DnaK requires the coupling of ATPase activity with substrate binding through residue E171. EMBO J 13:1687–1695

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wei J, Hendershot LM (1995) Characterization of the nucleotide binding properties and ATPase activity of recombinant hamster BiP purified from bacteria. J Biol Chem 270:26670–26676

    Article  CAS  PubMed  Google Scholar 

  34. Andréasson C, Fiaux J, Rampelt H, Mayer MP, Bukau B (2008) Hsp110 is a nucleotide-activated exchange factor for Hsp70. J Biol Chem 283:8877–8884

    Article  PubMed  Google Scholar 

  35. Höhfeld J, Jentsch S (1997) GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16:6209–6216

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dragovic Z, Broadley SA, Shomura Y, Bracher A, Hartl FU (2006) Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J 25:2519–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Steel GJ, Fullerton DM, Tyson JR, Stirling CJ (2004) Coordinated activation of Hsp70 chaperones. Science 303:98–101

    Article  CAS  PubMed  Google Scholar 

  38. Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ERP (2009) Solution conformation of wild-type E. Coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc Natl Acad Sci 106:8471–8476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias P. Mayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rampelt, H., Mayer, M.P., Bukau, B. (2018). Nucleotide Exchange Factors for Hsp70 Chaperones. In: Calderwood, S., Prince, T. (eds) Chaperones. Methods in Molecular Biology, vol 1709. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7477-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7477-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7476-4

  • Online ISBN: 978-1-4939-7477-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics