Skip to main content

Dimethyl-Labeling-Based Quantification of the Lysine Acetylome and Proteome of Plants

  • Protocol
  • First Online:
Photorespiration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1653))

Abstract

Photorespiratory enzymes in different cellular compartments have been reported to be posttranslational modified by phosphorylation, disulfide formation, S-nitrosylation, glutathionylation, and lysine acetylation. However, not much is known yet about the function of these modifications to regulate the activities, localizations, or interactions of the proteins in this metabolic pathway. Hence, it will be of great importance to study these modifications and their temporal and conditional occurrence in more detail. Here, we focus on the analysis of lysine acetylation as a relatively newly discovered modification on plant metabolic enzymes. The acetylation of lysine residues within proteins is a highly conserved and reversible posttranslational modification which occurs in all living organisms. First discovered on histones and implied in the regulation of gene expression, lysine acetylation also occurs on a diverse set of cellular proteins in different subcellular compartments and is particularly abundant on metabolic enzymes. Upon lysine acetylation, the function of proteins can be modulated due to the loss of the positive charge of the lysine residue. Lysine acetylation was also discovered on proteins involved in photosynthesis and novel tools are needed to study the regulation of this modification in dependence on the environmental conditions, tissues, or plant genotype. This chapter describes a method for the identification and relative quantification of lysine-acetylated proteins in plant tissues using a dimethyl labeling technique combined with an anti-acetyl lysine antibody enrichment strategy. Here, we describe the protein purification, labeling of trypsinated peptides, as well as immuno-enrichment of lysine-acetylated peptides followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) data acquisition and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uy R, Wold F (1977) Posttranslational covalent modification of proteins. Science 198:890–896

    Article  CAS  PubMed  Google Scholar 

  2. Chuh KN, Pratt MR (2015) Chemical methods for the proteome-wide identification of posttranslationally modified proteins. Curr Opin Chem Biol 24:27–37

    Article  CAS  PubMed  Google Scholar 

  3. Phillips D (1963) The presence of acetyl groups in histones. Biochem J 87:258–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  CAS  PubMed  Google Scholar 

  6. L’Hernault SW, Rosenbaum JL (1985) Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry 24:473–478

    Article  PubMed  Google Scholar 

  7. Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606

    Article  CAS  PubMed  Google Scholar 

  8. Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11:427–439

    Article  CAS  PubMed  Google Scholar 

  9. Zhang J, Sprung R, Pei J et al (2008) Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics 8:215–225

    Article  PubMed  Google Scholar 

  10. Henriksen P, Wagner SA, Weinert BT et al (2012) Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol Cell Proteomics 11:1510–1522

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lundby A, Lage K, Weinert BT et al (2012) Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep 2:419–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weinert BT, Wagner SA, Horn H et al (2011) Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal 4:ra48

    Article  CAS  PubMed  Google Scholar 

  13. König A-C, Hartl M, Boersema PJ et al (2014) The mitochondrial lysine acetylome of Arabidopsis. Mitochondrion 19:252–260

    Article  PubMed  Google Scholar 

  14. Svinkina T, Gu H, Silva JC et al (2015) Deep, quantitative coverage of the lysine acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow. Mol Cell Proteomics 14:2429–2440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao S, Xu W, Jiang W et al (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Finkemeier I, Laxa M, Miguet L et al (2011) Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. Plant Physiol 155:1779–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  CAS  PubMed  Google Scholar 

  18. Wu X, Oh M-H, Schwarz EM et al (2011) Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis. Plant Physiol 155:1769–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang X-J, Seto E (2008) Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 31:449–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. He D, Wang Q, Li M et al (2016) Global proteome analyses of lysine acetylation and succinylation reveal the widespread involvement of both modification in metabolism in the embryo of germinating rice seed. J Proteome Res 15:879–890

    Article  CAS  PubMed  Google Scholar 

  21. Nallamilli BRR, Edelmann MJ, Zhong X et al (2014) Global analysis of lysine acetylation suggests the involvement of protein acetylation in diverse biological processes in rice (Oryza sativa). PLoS One 9:e89283

    Article  PubMed  PubMed Central  Google Scholar 

  22. Smith-Hammond CL, Hoyos E, Miernyk JA (2014) The pea seedling mitochondrial Nε-lysine acetylome. Mitochondrion 19:154–165

    Article  CAS  PubMed  Google Scholar 

  23. Xiong Y, Peng X, Cheng Z et al (2016) A comprehensive catalog of the lysine-acetylation targets in rice (Oryza sativa) based on proteomic analyses. J Proteomics 138:20–29

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Song L, Liang W et al (2016) Comprehensive profiling of lysine acetylproteome analysis reveals diverse functions of lysine acetylation in common wheat. Sci Rep 6:21069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marchand C, Le Maréchal P, Meyer Y et al (2004) New targets of Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics 4:2696–2706

    Article  CAS  PubMed  Google Scholar 

  26. Palmieri MC, Lindermayr C, Bauwe H et al (2010) Regulation of plant glycine decarboxylase by S-nitrosylation and glutathionylation. Plant Physiol 152:1514–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abat JK, Mattoo AK, Deswal R (2008) S-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata- ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition. FEBS J 275:2862–2872

    Article  CAS  PubMed  Google Scholar 

  28. Ortega-Galisteo AP, Rodriguez-Serrano M, Pazmino DM et al (2012) S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot 63:2089–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakagami H, Sugiyama N, Mochida K et al (2010) Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol 153:1161–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reiland S, Messerli G, Baerenfaller K et al (2009) Large-scale arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150:889–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hodges M, Jossier M, Boex-Fontvieille E et al (2013) Protein phosphorylation and photorespiration. Plant Biol 15:694–706

    Article  CAS  PubMed  Google Scholar 

  32. Hodges M, Dellero Y, Keech O et al (2016) Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. J Exp Bot 67:3015–3026

    Article  CAS  PubMed  Google Scholar 

  33. Aryal UK, Krochko JE, Ross ARS (2012) Identification of phosphoproteins in Arabidopsis thaliana leaves using polyethylene glycol fractionation, immobilized metal-ion affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry. J Proteome Res 11:425–437

    Article  CAS  PubMed  Google Scholar 

  34. Sugiyama N, Nakagami H, Mochida K et al (2008) Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol 4:285–286

    Article  Google Scholar 

  35. Somerville CR, Ogren WL (1980) Photorespiration mutants of Arabidopsis thaliana deficient in serine-glyoxylate aminotransferase activity. Proc Natl Acad Sci U S A 77:2684–2687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blackwell RD, Murray AJS, Lea PJ (1987) The isolation and characterisation of photorespiratory mutants of barley and pea. In: Progress in photosynthesis research. Springer, Dordrecht, The Netherlands, pp 625–628

    Chapter  Google Scholar 

  37. McHale NA, Havir EA, Zelitch I (1988) A mutant of Nicotiana sylvestris deficient in serine glyoxylate aminotransferase activity. Theor Appl Genet 76:71–75

    Article  CAS  PubMed  Google Scholar 

  38. Heineke D, Bykova N, Gardeström P et al (2001) Metabolic response of potato plants to an antisense reduction of the P-protein of glycine decarboxylase. Planta 212:880–887

    Article  CAS  PubMed  Google Scholar 

  39. Xu H, Zhang J, Zeng J et al (2009) Inducible antisense suppression of glycolate oxidase reveals its strong regulation over photosynthesis in rice. J Exp Bot 60:1799–1809

    Article  CAS  PubMed  Google Scholar 

  40. Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15:330–336

    Article  CAS  PubMed  Google Scholar 

  41. Garcia BA, Pesavento JJ, Mizzen CA et al (2007) Pervasive combinatorial modification of histone H3 in human cells. Nat Methods 4:487–489

    Article  CAS  PubMed  Google Scholar 

  42. Yates JR, Kelleher NL (2013) Top down proteomics. Anal Chem 85:6151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wiśniewski JR, Zougman A, Nagaraj N et al (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362

    Article  PubMed  Google Scholar 

  44. Boersema PJ, Raijmakers R, Lemeer S et al (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4:484–494

    Article  CAS  PubMed  Google Scholar 

  45. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Finkemeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lassowskat, I., Hartl, M., Hosp, F., Boersema, P.J., Mann, M., Finkemeier, I. (2017). Dimethyl-Labeling-Based Quantification of the Lysine Acetylome and Proteome of Plants. In: Fernie, A., Bauwe, H., Weber, A. (eds) Photorespiration. Methods in Molecular Biology, vol 1653. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7225-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7225-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7224-1

  • Online ISBN: 978-1-4939-7225-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics