Skip to main content

CRISPR/Cas9 in the Chicken Embryo

  • Protocol
  • First Online:
Avian and Reptilian Developmental Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1650))

Abstract

Genome editing is driving a revolution in the biomedical sciences that carries the promise for future treatments of genetic diseases. The CRISPR/Cas9 system of RNA-guided genome editing has been successfully applied to modify the genome of a wide spectrum of organisms. We recently showed that this technique can be combined with in vivo electroporation to inhibit the function of genes of interest in somatic cells of the developing chicken embryo. We present here a simplified version of the previously described technique that leads to effective gene loss-of-function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973. doi:10.1038/nbt1125

    Article  CAS  PubMed  Google Scholar 

  2. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Li T, Huang S, Jiang WZ et al (2011) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372. doi:10.1093/nar/gkq704

    Article  PubMed  Google Scholar 

  4. Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148. doi:10.1038/nbt.1755

    Article  CAS  PubMed  Google Scholar 

  5. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. doi:10.1126/science.1225829

    Article  CAS  PubMed  Google Scholar 

  6. Pennisi E (2013) The CRISPR craze. Science 341:833–836. doi:10.1126/science.341.6148.833

    Article  CAS  PubMed  Google Scholar 

  7. Barrangou R (2014) Cas9 targeting and the CRISPR revolution. Science 344:707–708. doi:10.1126/science.1252964

    Article  CAS  PubMed  Google Scholar 

  8. Wu X, Scott DA, Kriz AJ et al (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32:670–676. doi:10.1038/nbt.2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Komor AC, Badran AH, Liu DR (2017) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168(1-2):20–36. doi:10.1016/j.cell.2016.10.044

    Article  CAS  PubMed  Google Scholar 

  10. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278. doi:10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  PubMed  Google Scholar 

  12. Sánchez-Rivera FJ, Papagiannakopoulos T, Romero R et al (2014) Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516:428–431. doi:10.1038/nature13906

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xue W, Chen S, Yin H et al (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514:380–384. doi:10.1038/nature13589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yin H, Xue W, Chen S et al (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32(6):551–553. doi:10.1038/nbt.2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang S, Sengel C, Emerson MM, Cepko CL (2014) A Gene regulatory network controls the binary fate decision of rod and bipolar cells in the vertebrate retina. Dev Cell 30:513–527

    Article  PubMed  PubMed Central  Google Scholar 

  16. Blair SS (2003) Genetic mosaic techniques for studying Drosophila development. Development 130:5065–5072. doi:10.1242/dev.00774

    Article  CAS  PubMed  Google Scholar 

  17. Scaal M, Gros J, Lesbros C, Marcelle C (2004) In ovo electroporation of avian somites. Dev Dyn 229:643–650. doi:10.1002/dvdy.10433

    Article  CAS  PubMed  Google Scholar 

  18. Itasaki N, Bel-Vialar S, Krumlauf R (1999) Nature citation. Nat Cell Biol 1:E203–E207. doi:10.1038/70231

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura H, Funahashi J (2013) Electroporation: past, present and future. Develop Growth Differ 55:15–19. doi:10.1111/dgd.12012

    Article  Google Scholar 

  20. Yokota Y, Saito D, Tadokoro R, Takahashi Y (2011) Genomically integrated transgenes are stably and conditionally expressed in neural crest cell-specific lineages. Dev Biol 353:382–395

    Article  CAS  PubMed  Google Scholar 

  21. Serralbo O, Picard CA, Marcelle C (2013) Long term, inducible gene loss-of-function in the chicken embryo. Genesis 51(5):372–380. doi:10.1002/dvg.22388

    Article  CAS  PubMed  Google Scholar 

  22. Voiculescu O, Papanayotou C, Stern CD (2008) Spatially and temporally controlled electroporation of early chick embryos. Nat Protoc 3:419–426. doi:10.1038/nprot.2008.10

    Article  CAS  PubMed  Google Scholar 

  23. Das RM, Van Hateren NJ, Howell GR et al (2006) A robust system for RNA interference in the chicken using a modified microRNA operon. Dev Biol 294:554–563. doi:10.1016/j.ydbio.2006.02.020

    Article  CAS  PubMed  Google Scholar 

  24. Hou X, Omi M, Harada H et al (2011) Conditional knockdown of target gene expression by tetracycline regulated transcription of double strand RNA. Develop Growth Differ 53:69–75. doi:10.1111/j.1440-169X.2010.01229.x

    Article  CAS  Google Scholar 

  25. Gros J, Serralbo O, Marcelle C (2009) WNT11 acts as a directional cue to organize the elongation of early muscle fibres. Nature 457:589–593. doi:10.1038/nature07564

    Article  CAS  PubMed  Google Scholar 

  26. Rios AC, Serralbo O, Salgado D, Marcelle C (2011) Neural crest regulates myogenesis through the transient activation of NOTCH. Nature 473:532–535. doi:10.1038/nature09970

    Article  CAS  PubMed  Google Scholar 

  27. Serralbo O, Marcelle C (2014) Migrating cells mediate long-range WNT signaling. Development 141:2057–2063. doi:10.1242/dev.107656

    Article  CAS  PubMed  Google Scholar 

  28. Norris A, Streit A (2014) Morpholinos: studying gene function in the chick. Dev Biol 66:454–465. doi:10.1016/j.ymeth.2013.10.009

    CAS  Google Scholar 

  29. Véron N, Qu Z, Kipen PAS et al (2015) CRISPR mediated somatic cell genome engineering in the chicken. Dev Biol 407(1):68–74. doi:10.1016/j.ydbio.2015.08.007

    Article  PubMed  Google Scholar 

  30. Canver MC, Bauer DE, Dass A et al (2014) Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J Biol Chem 289:21312–21324

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ran FA, Hsu PD, Lin C-Y et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389. doi:10.1016/j.cell.2013.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou J, Wang J, Shen B et al (2014) Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting. FEBS J 281:1717–1725. doi:10.1111/febs.12735

    Article  CAS  PubMed  Google Scholar 

  33. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. doi:10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ranganathan V, Wahlin K, Maruotti J, Zack DJ (2014) Expansion of the CRISPR–Cas9 genome targeting space through the use of H1 promoter-expressed guide RNAs. Nat Commun 5:4516. doi:10.1038/ncomms5516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Daniel Sieiro for critical reading of the manuscript. This work was supported by grants from the National Health and Medical Research Council (NHMRC, Australia) to C.M. and N.V. and by the Programme Avenir Lyon Saint-Etienne (PALSE) from the University of Lyon to C.M and V.M. The Australian Regenerative Medicine Institute is supported by grants from the State Government of Victoria and the Australian Government. The NeuroMyoGene Institute is supported by grants from the Association Française contre les Myopathies (AFM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Marcelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Morin, V., Véron, N., Marcelle, C. (2017). CRISPR/Cas9 in the Chicken Embryo. In: Sheng, G. (eds) Avian and Reptilian Developmental Biology. Methods in Molecular Biology, vol 1650. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7216-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7216-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7215-9

  • Online ISBN: 978-1-4939-7216-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics