Skip to main content

Somitogenesis and Axial Development in Reptiles

  • Protocol
  • First Online:
Avian and Reptilian Developmental Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1650))

  • 1672 Accesses

Abstract

Among amniote vertebrates, reptiles display the greatest variation in axial skeleton morphology. Only recently have they been used in gene expression studies of somitogenesis , challenging previous assumptions about the segmentation clock and axial patterning. An increasing number of reptile genomes and transcriptomes are becoming available as next-generation sequencing becomes more affordable. Information regarding gene sequence and structure can be used to design and synthesize labeled riboprobes by in vitro transcription for gene expression analysis by in situ hybridization, thus, enabling the characterization of spatial and temporal expression patterns of genes involved in somitogenesis, a topic of great interest within evolutionary developmental studies of vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galis F, Carrier D, van Alphen J, van der Mije SD, Van Dooren TJM, Metz JAJ et al (2014) Fast running restricts evolutionary change of the vertebral column in mammals. Proc Natl Acad Sci U S A 111:11401–11406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Müller J, Scheyer TM, Head JJ, Barrett PM, Werneburg I, Ericson PGP et al (2010) Homeotic effects, somitogenesis and the evolution of vertebral numbers in recent and fossil amniotes. Proc Natl Acad Sci U S A 107:2118–2123

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mansfield JH, Abzhanov A (2010) Hox expression in the American alligator and evolution of Archosaurian axial patterning. J Exp Zool Part B Mol Dev Evol 314:629–644

    Article  Google Scholar 

  4. Gilbert SF, Loredo GA, Brukman A, Burke AC (2001) Morphogenesis of the turtle shell: the development of a novel structure in tetrapod evolution. Evol Dev 3:47–58

    Article  CAS  PubMed  Google Scholar 

  5. Hirasawa T, Pascual-Anaya J, Kamezaki N, Taniguchi M, Mine K, Kuratani S (2014) The evolutionary origin of the turtle shell and its dependence on the axial arrest of the embryonic rib cage. J Exp Zool Part B Mol Dev Evol 324:194–207

    Article  Google Scholar 

  6. Wiens JJ, Brandley MC, Reeder TW (2006) Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution 60:123–141

    PubMed  Google Scholar 

  7. Romer AS (1956) Osteology of the reptiles. University of Chicago Press, Chicago

    Google Scholar 

  8. Polly PD, Head JJ, Cohn MJ (2001) Testing modularity and dissociation: the evolution of regional proportions in snakes. In: Zelditch ML (ed) Beyond Heterochrony: the evolution of development. Wiley-Liss, New York

    Google Scholar 

  9. Eckalbar WL, Lasku E, Infante CR, Elsey RM, Markov GJ, Allen AN et al (2012) Somitogenesis in the anole lizard and alligator reveals evolutionary convergence and divergence in the amniote segmentation clock. Dev Biol 363:308–319

    Article  CAS  PubMed  Google Scholar 

  10. Christ B, Huang R, Scaal M (2007) Amniote somite derivatives. Dev Dyn 236:2382–2396

    Article  CAS  PubMed  Google Scholar 

  11. Brent AE, Tabin CJ (2002) Developmental regulation of somite derivatives: muscle, cartilage and tendon. Curr Opin Genet Dev 12:548–557

    Article  CAS  PubMed  Google Scholar 

  12. Beck CW (2015) Development of the vertebrate tailbud. Wiley Interdiscip Rev Dev Biol 4:33–44

    Article  CAS  PubMed  Google Scholar 

  13. Ohta S, Suzuki K, Tachibana K, Tanaka H, Yamada G (2007) Cessation of gastrulation is mediated by suppression of epithelial-mesenchymal transition at the ventral ectodermal ridge. Development 134:4315–4324

    Article  CAS  PubMed  Google Scholar 

  14. Kusumi K, May CM, Eckalbar WL (2013) A large-scale view of the evolution of amniote development: insights from somitogenesis in reptiles. Curr Opin Genet Dev 23:491–497

    Article  CAS  PubMed  Google Scholar 

  15. Koyano-Nakagawa N, Kim J, Anderson D, Kintner C (2000) Hes6 acts in a positive feedback loop with the neurogenins to promote neuronal differentiation. Development 127:4203–4216

    CAS  PubMed  Google Scholar 

  16. Aulehla A, Pourquié O (2010) Signaling gradients during paraxial mesoderm development. Cold Spring Harb Perspect Biol 2:a000869

    Article  PubMed  PubMed Central  Google Scholar 

  17. Burke A, Nelson C, Morgan B, Tabin C (1995) Hox genes and the evolution of vertebrate axial morphology. Development 121:333–346

    CAS  PubMed  Google Scholar 

  18. Ohya YK, Kuraku S, Kuratani S (2005) Hox code in embryos of Chinese soft-shelled turtle Pelodiscus sinensis correlates with the evolutionary innovation in the turtle. J Exp Zool Part B Mol Dev Evol 304:107–118

    Article  Google Scholar 

  19. Cohn M, Tickle C (1999) Developmental basis of limblessness and axial patterning in snakes. Nature 399:474–479

    Article  CAS  PubMed  Google Scholar 

  20. Di-Poï N, Montoya-Burgos J, Miller H, Pourquié O, Milinkovitch MC (2010) Changes in Hox genes´ structure and function during the evolution of the squamate body plan. Nature 464:99–103

    Article  PubMed  Google Scholar 

  21. Woltering JM, Vonk FJ, Müller H, Bardine N, Tuduce IL, de Bakker MAG et al (2009) Axial patterning in snakes and caecilians: evidence for an alternative interpretation of the Hox code. Dev Biol 332:82–89

    Article  CAS  PubMed  Google Scholar 

  22. Guerreiro I, Nunes A, Woltering JM, Casaca A, Nóvoa A, Vinagre T et al (2013) Role of a polymorphism in a Hox/Pax-responsive enhancer in the evolution of the vertebrate spine. Proc Natl Acad Sci U S A 110:10682–10686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Head JJ, Polly PD (2015) Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature 520:86–91

    Article  CAS  PubMed  Google Scholar 

  24. Licht P (1973) Influence of temperature and photoperiod on the annual ovarian cycle in the lizard Anolis carolinensis. Copeia 1973:465–472

    Article  Google Scholar 

  25. Lovern MB, Wade J (2003) Yolk testosterone varies with sex in eggs of the lizard, Anolis carolinensis. J Exp Zool A Comp Exp Biol 295:206–210

    Article  PubMed  Google Scholar 

  26. Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E et al (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477:587–591

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eckalbar WL, Hutchins ED, Markov GJ, Allen AN, Corneveaux JJ, Lindblad-Toh K et al (2013) Genome reannotation of the lizard Anolis carolinensis based on 14 adult and embryonic deep transcriptomes. BMC Genomics 14:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ikeuchi I (2004) Male and female reproductive cycles of the Japanese Gecko, Gekko japonicus, in Kyoto, Japan. J Herpetol 38:269–274

    Article  Google Scholar 

  29. Zhang YP, WG D, Zhu LJ (2009) Differences in body size and female reproductive traits between two sympatric geckos, Gekko japonicus and Gekko hokouensis. Folia Zool 58:113–122

    Google Scholar 

  30. Ji X, Wang PC (1991) Incubation character of eggs of the gecko Gekko japonicus. Zool Res 12:28–78

    Google Scholar 

  31. Liu Y, Zhou Q, Wang Y, Luo L, Yang J, Yang L et al (2015) Gekko japonicus genome reveals evolution of adhesive toe pads and tail regeneration. Nat Commun 6:1–11

    CAS  Google Scholar 

  32. Cannon MJ (2003) Husbandry and veterinary aspects of the bearded dragon (Pogona spp.) in Australia. Semin Avian Exot Pet Med 12:205–214

    Article  Google Scholar 

  33. Holleley CE, O’Meally D, Sarre SD, Marshall-Graves JA, Ezaz T, Matsubara K et al (2015) Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature 523:79–82

    Article  CAS  PubMed  Google Scholar 

  34. Quinn AE, Georges A, Sarre SD, Guarino F, Ezaz T, Graves JAM (2007) Temperature sex reversal implies sex gene dosage in a reptile. Science 316:411

    Article  CAS  PubMed  Google Scholar 

  35. Georges A, Li Q, Lian J, O’Meally D, Deakin J, Wang Z et al (2015) High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps. Gigascience 4:45

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wall F (1908) Notes on the incubation and brood of the Indo-Burmese snake lizard or slow worm (Ophisaurus gracilis). J Bombay Nat Hist Soc 18:503–504

    Google Scholar 

  37. Vitt LJ, Caldwell JP (2009) Herpetology: an introductory biology of amphibians and reptiles, 3rd edn. Academic Press, Massachusetts

    Google Scholar 

  38. Song B, Cheng S, Sun Y, Zhong X, Jin J, Guan R et al (2015) A genome draft of the legless anguid lizard, Ophisaurus gracilis. Gigascience 4:15–17

    Article  Google Scholar 

  39. Mierop LHS V, Barnard SM (1976) Observations on the reproduction of Python molurus bivittatus (Reptilia, Serpentes, Boidae). J Herpetol 10:333–340

    Article  Google Scholar 

  40. Castoe TA, de Koning APJ, Hall KT, Card DC, Schield DR, Fujita MK et al (2013) The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc Natl Acad Sci U S A 110:20645–20650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chanhome L, Jintakune P, Wilde H, Cox MJ (2001) Venomous snake husbandry in Thailand. Wilderness Environ Med 12:17–23

    Article  CAS  PubMed  Google Scholar 

  42. Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJR et al (2013) The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci U S A 110:20651–20656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bird WM, Peak P, Baxley DL (2015) Natural history and meristics of an allopatric population of red cornsnakes, Pantherophis guttatus (Linnaeus, 1766) in Central Kentucky, USA. J North Am Herpetol 1:6–11

    Google Scholar 

  44. Gomez C, Ozbudak EM, Wunderlich J, Baumann D, Lewis J, Pourquié O (2008) Control of segment number in vertebrate embryos. Nature 454:335–339

    Article  CAS  PubMed  Google Scholar 

  45. Ullate-Agote A, Milinkovitch MC, Tzika AC (2014) The genome sequence of the corn snake (Pantherophis guttatus), a valuable resource for EvoDevo studies in squamates. Int J Dev Biol 58:881–888

    Article  CAS  PubMed  Google Scholar 

  46. Krawchuk MA, Brooks RJ (1998) Basking behavior as a measure of reproductive cost and energy allocations in the painted turtles, Chrysemys picta. Herpetologica 5:112–121

    Google Scholar 

  47. Cordero GA, Janzen FJ (2014) An enhanced developmental staging table for the painted turtle, Chrysemys picta (Testudines: Emydidae). J Morphol 275:442–455

    Article  Google Scholar 

  48. Rowe JW (1994) Reproductive variation and the egg size-clutch size trade-off within and among populations of painted turtles (Chrysemys picta bellii). Oecologia 99:35–44

    Article  PubMed  Google Scholar 

  49. Shaffer HB, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N et al (2013) The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol 14:R28

    Article  PubMed  Google Scholar 

  50. Gibbons JW, Greene JL (1990) Reproduction in the slider and other species of turtles. In: Whitfield JW (ed) Life history and ecology of the slider turtle. Smithsonian Institution Press, Washington, D.C

    Google Scholar 

  51. Filoramo NI, Janzen FJ (1999) Effects of hydric conditions during incubation on overwintering hatchlings of the red eared slider turtle (Trachemys scripta elegans). J Herpetol 33:29–35

    Article  Google Scholar 

  52. Spotila LD, Spotila JR, Hall SE (1998) Sequence and expression analysis of Wt1 and Sox9 in the red-eared slider turtle, Trachemys scripta. J Exp Zool 281:417–427

    Article  CAS  PubMed  Google Scholar 

  53. Tucker JK, Paukstis GL, Janzen FJ (1998) Annual and local variation in reproduction in the red-eared slider, Trachemys scripta elegans. J Herpetol 32:515–526

    Article  Google Scholar 

  54. Kaplinsky NJ, Gilbert SF, Cebra-Thomas J, Lilleväli K, Saare M, Chang EY et al (2013) The embryonic transcriptome of the red-eared slider turtle (Trachemys scripta). PLoS One 8:e66357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ji X, Chen F, Du W, Chen H (2003) Incubation temperature affects hatchling growth but not sexual phenotype in the Chinese soft-shelled turtle, Pelodiscus sinensis (Trionychidae). J Zool 261:409–416

    Article  Google Scholar 

  56. Tokita M, Kuratani S (2001) Normal embryonic stages of the Chinese softshelled turtle Pelodiscus sinensis (Trionychidae). Zool Sci 18:705–715

    Article  Google Scholar 

  57. Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z et al (2013) The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet 45:701–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Godley BJ, Broderick AC, Frauenstein R, Glen F, Hays GC (2002) Reproductive seasonality and sexual dimorphism in green turtles. Mar Ecol Prog Ser 226:125–133

    Article  Google Scholar 

  59. Miller JD (1985) Embryology of marine turtles. In: Gans C, Billet F, Maderson PFA (eds) Biology of the reptilia, Development A, vol 14. Wiley, New York

    Google Scholar 

  60. Ferguson MW (1995) Reproductive biology and embryology of the crocodilians. In: Gans C, Billet F, Maderson PFA (eds) Biology of the reptilia, Development A, vol 14. Wiley, New York

    Google Scholar 

  61. St John JA, Braun EL, Isberg SR, Miles LG, Chong AY, Gongora J et al (2012) Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biol 13:415

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hua T, Wang C, Chen B (2004) Stages of embryonic development for Alligator sinensis. Zool Res 25:263–271

    Google Scholar 

  63. Wan Q, Pan S, Hu L, Zhu Y, Xu P, Xia J et al (2013) Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator. Cell Res 23:1091–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu Q, Wilkinson D (1992) In situ hybridization of mRNA with hapten labelled probes. In: Wilkinson D (ed) In situ hybridization, a practical approach. Oxford University Press, New York

    Google Scholar 

Download references

Acknowledgments

We would like to thank Walter Eckalbar for the images of green anole embryonic gene expression of dll1 and lfng. We also thank Catherine May and Ruth Elsey for the alligator embryo collection and dissection and Jon Grove for information on Burmese python reproduction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenro Kusumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Xu, C., Grizante, M.B., Kusumi, K. (2017). Somitogenesis and Axial Development in Reptiles. In: Sheng, G. (eds) Avian and Reptilian Developmental Biology. Methods in Molecular Biology, vol 1650. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7216-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7216-6_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7215-9

  • Online ISBN: 978-1-4939-7216-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics