Skip to main content

Measurement of Oncometabolites d-2-Hydroxyglutaric Acid and l-2-Hydroxyglutaric Acid

  • Protocol
  • First Online:
Acute Myeloid Leukemia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1633))

Abstract

We describe a liquid chromatography-tandem mass spectrometry assay for measurement of d-2-hydroxyglutaric acid and l-2-hydroxyglutaric acid. These metabolites are increased in specific inborn errors of metabolism and are now recognized as oncometabolites. The measurement of d-2-hydroxyglutarate in peripheral blood may be used as a biomarker for screening and follow-up of patients with IDH-mutated acute myeloid leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Struys EA, Verhoeven NM, Jansen EE et al (2006) Metabolism of gamma-hydroxybutyrate to d-2-hydroxyglutarate in mammals: further evidence for d-2-hydroxyglutarate transhydrogenase. Metabolism 55:353–358

    Article  CAS  PubMed  Google Scholar 

  2. Struys EA, Verhoeven NM, Ten Brink HJ et al (2005) Kinetic characterization of human hydroxyacid-oxoacid transhydrogenase: relevance to D-2-hydroxyglutaric and gamma-hydroxybutyric acidurias. J Inherit Metab Dis 28:921–930

    Article  CAS  PubMed  Google Scholar 

  3. Van Schaftingen E, Rzem R, Veiga-da-Cunha M (2009) L-2-Hydroxyglutaric aciduria, a disorder of metabolite repair. J Inherit Metab Dis 32:135–142

    Article  PubMed  Google Scholar 

  4. Intlekofer AM, Dematteo RG, Venneti S et al (2015) Hypoxia induces production of L-2-Hydroxyglutarate. Cell Metab 22:304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oldham WM, Clish CB, Yang Y et al (2015) Hypoxia-mediated increases in L-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab 22:291–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Steenweg ME, Jakobs C, Errami A et al (2010) An overview of L-2-hydroxyglutarate dehydrogenase gene (L2HGDH) variants: a genotype-phenotype study. Hum Mutat 31:380–390

    Article  CAS  PubMed  Google Scholar 

  7. Topcu M, Jobard F, Halliez S et al (2004) L-2-Hydroxyglutaric aciduria: identification of a mutant gene C14orf160, localized on chromosome 14q22.1. Hum Mol Genet 13:2803–2811

    Article  CAS  PubMed  Google Scholar 

  8. Rzem R, Veiga-da-Cunha M, Noel G et al (2004) A gene encoding a putative FAD-dependent L-2-hydroxyglutarate dehydrogenase is mutated in L-2-hydroxyglutaric aciduria. Proc Natl Acad Sci U S A 101:16849–16854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Struys EA (2006) D-2-Hydroxyglutaric aciduria: Unravelling the biochemical pathway and the genetic defect. J Inherit Metab Dis 29:21–29

    Article  CAS  PubMed  Google Scholar 

  10. Kranendijk M, Struys EA, Gibson KM et al (2009) Evidence for genetic heterogeneity in D-2-hydroxyglutaric aciduria. Hum Mutat 31:279–283

    Article  Google Scholar 

  11. Struys EA, Korman SH, Salomons GS et al (2005) Mutations in phenotypically mild D-2-hydroxyglutaric aciduria. Ann Neurol 58:626–630

    Article  CAS  PubMed  Google Scholar 

  12. Struys EA, Salomons GS, Achouri Y et al (2005) Mutations in the D-2-hydroxyglutarate dehydrogenase gene cause D-2-hydroxyglutaric aciduria. Am J Hum Genet 76:358–360

    Article  CAS  PubMed  Google Scholar 

  13. Nota B, Struys EA, Pop A et al (2013) Deficiency in SLC25A1, encoding the mitochondrial citrate carrier, causes combined D-2- and L-2-hydroxyglutaric aciduria. Am J Hum Genet 92:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kranendijk M, Struys EA, van Schaftingen E et al (2010) IDH2 mutations in patients with D-2-hydroxyglutaric aciduria. Science 330:336

    Article  CAS  PubMed  Google Scholar 

  15. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mardis ER, Ding L, Dooling DJ et al (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thol F, Damm F, Wagner K et al (2010) Prognostic impact of IDH2 mutations in cytogenetically normal acute myeloid leukemia. Blood 116:614–616

    Article  CAS  PubMed  Google Scholar 

  19. Abbas S, Lugthart S, Kavelaars FG et al (2010) Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood 116:2122–2126

    Article  CAS  PubMed  Google Scholar 

  20. Rakheja D, Konoplev S, Su M et al (2011) High incidence of IDH mutations in acute myeloid leukaemia with cuplike nuclei. Br J Haematol 155:125–128

    Article  CAS  PubMed  Google Scholar 

  21. Borger DR, Tanabe KK, Fan KC et al (2012) Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist 17:72–79

    Article  CAS  PubMed  Google Scholar 

  22. Wang P, Dong Q, Zhang C et al (2013) Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene 32:3091–3100

    Article  CAS  PubMed  Google Scholar 

  23. Amary MF, Bacsi K, Maggiani F et al (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224:334–343

    Article  CAS  PubMed  Google Scholar 

  24. Gross S, Cairns RA, Minden MD et al (2010) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 207:339–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ward PS, Patel J, Wise DR et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Choi C, Ganji SK, DeBerardinis RJ et al (2012) 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 18:624–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moroni I, Bugiani M, D’Incerti L et al (2004) L-2-hydroxyglutaric aciduria and brain malignant tumors: a predisposing condition? Neurology 62:1882–1884

    Article  CAS  PubMed  Google Scholar 

  29. Ozisik PA, Akalan N, Palaoglu S et al (2002) Medulloblastoma in a child with the metabolic disease L-2-hydroxyglutaric aciduria. Pediatr Neurosurg 37:22–26

    Article  PubMed  Google Scholar 

  30. Haliloglu G, Jobard F, Oguz KK et al (2008) L-2-hydroxyglutaric aciduria and brain tumors in children with mutations in the L2HGDH gene: neuroimaging findings. Neuropediatrics 39:119–122

    Article  CAS  PubMed  Google Scholar 

  31. Shim EH, Livi CB, Rakheja D et al (2014) L-2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov 4:1290–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Flavahan WA, Drier Y, Liau BB et al (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:10–114

    Article  Google Scholar 

  33. Rakheja D, Medeiros LJ, Bevan S et al (2013) The emerging role of d-2-hydroxyglutarate as an oncometabolite in hematolymphoid and central nervous system neoplasms. Front Oncol 3:169

    Article  PubMed  PubMed Central  Google Scholar 

  34. Figueroa ME, Abdel-Wahab O, Lu C et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chowdhury R, Yeoh KK, Tian YM et al (2011) The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12:463–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. DiNardo CD, Propert KJ, Loren AW et al (2013) Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia. Blood 121:4917–4924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Borger DR, Goyal L, Yau T et al (2014) Circulating oncometabolite 2-hydroxyglutarate is a potential surrogate biomarker in patients with isocitrate dehydrogenase-mutant intrahepatic cholangiocarcinoma. Clin Cancer Res 20:1884–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pollyea DA, Kohrt HE, Zhang B et al (2013) 2-Hydroxyglutarate in IDH mutant acute myeloid leukemia: predicting patient responses, minimal residual disease and correlations with methylcytosine and hydroxymethylcytosine levels. Leuk Lymphoma 54:408–410

    Article  CAS  PubMed  Google Scholar 

  40. Natsumeda M, Igarashi H, Nomura T et al (2014) Accumulation of 2-hydroxyglutarate in gliomas correlates with survival: a study by 3.0-tesla magnetic resonance spectroscopy. Acta Neuropathol Commun 2(158):2014

    Google Scholar 

  41. Andronesi OC, Kim GS, Gerstner E et al (2012) Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med 4:116ra114

    Article  Google Scholar 

  42. Janin M, Mylonas E, Saada V et al (2014) Serum 2-hydroxyglutarate production in IDH1- and IDH2-mutated de novo acute myeloid leukemia: a study by the acute leukemia French association group. J Clin Oncol 32:297–305

    Article  CAS  PubMed  Google Scholar 

  43. Sellner L, Capper D, Meyer J et al (2010) Increased levels of 2-hydroxyglutarate in AML patients with IDH1-R132H and IDH2-R140Q mutations. Eur J Haematol 85:457–459

    Article  PubMed  Google Scholar 

  44. Kalinina J, Carroll A, Wang L et al (2012) Detection of “oncometabolite” 2-hydroxy-glutarate by magnetic resonance analysis as a biomarker of IDH1/2 mutations in glioma. J Mol Med (Berl) 90:1161–1171

    Google Scholar 

  45. McGehee E, Rakheja D, Oliver D et al (2016) The importance of plasma D-2HG measurement in screening for IDH mutations in acute myeloid leukaemia. Br J Haematol 173:323–326

    Article  PubMed  Google Scholar 

  46. Rakheja D, Boriack RL, Mitui M et al (2011) Papillary thyroid carcinoma shows elevated levels of 2-hydroxyglutarate. Tumour Biol 32:325–323

    Article  CAS  PubMed  Google Scholar 

  47. Rakheja D, Mitui M, Boriack RL et al (2011) Isocitrate dehydrogenase 1/2 mutational analyses and 2-hydroxyglutarate measurements in Wilms tumors. Pediatr Blood Cancer 56:379–383

    Article  PubMed  Google Scholar 

  48. Struys EA, Jansen EE, Verhoeven NM et al (2004) Measurement of urinary D- and L-2-hydroxyglutarate enantiomers by stable-isotope-dilution liquid chromatography-tandem mass spectrometry after derivatization with diacetyl-L-tartaric anhydride. Clin Chem 50:1391–1395

    Article  CAS  PubMed  Google Scholar 

  49. Struys EA, Verhoeven NM, Roos B et al (2003) Disease-related metabolites in culture medium of fibroblasts from patients with D-2-hydroxyglutaric aciduria, L-2-hydroxyglutaric aciduria, and combined D/L-2-hydroxyglutaric aciduria. Clin Chem 49:1133–1138

    Article  CAS  PubMed  Google Scholar 

  50. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Rakheja M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Jones, P.M., Boriack, R., Struys, E.A., Rakheja, D. (2017). Measurement of Oncometabolites d-2-Hydroxyglutaric Acid and l-2-Hydroxyglutaric Acid. In: Fortina, P., Londin, E., Park, J., Kricka, L. (eds) Acute Myeloid Leukemia. Methods in Molecular Biology, vol 1633. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7142-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7142-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7140-4

  • Online ISBN: 978-1-4939-7142-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics