Skip to main content

A Zebrafish Model for Evaluating the Function of Human Leukemic Gene IDH1 and Its Mutation

  • Protocol
  • First Online:
Acute Myeloid Leukemia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1633))

Abstract

The recent advent of next-generation sequencing (NGS) has greatly accelerated identification of gene mutations in myeloid malignancies at unprecedented speed that will soon outpace their functional validation by conventional laboratory techniques and animal models. A high-throughput whole-organism model is useful for the functional validation of new mutations. We recently reported the use of zebrafish to evaluate the hematopoietic function of isocitrate dehydrogenase 1 (IDH1) and the effects of expressing human IDH1-R132H that is frequently identified in human acute myeloid leukemia (AML), in myelopoiesis, with a view to develop zebrafish as a model of AML. Here, we use IDH1 as an example to describe a comprehensive approach to evaluate hematopoietic gene function and the effects of mutations using zebrafish as a model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mardis ER, Ding L, Dooling DJ et al (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361(11):1058–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ley TJ, Ding L, Walter MJ et al (2010) DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363(25):2424–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patel JP, Gonen M, Figueroa ME et al (2012) Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 366(12):1079–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cancer Genome Atlas Research Network (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368(22):2059–2074

    Article  Google Scholar 

  5. Martin CS, Moriyama A, Zon LI (2011) Hematopoietic stem cells, hematopoiesis and disease: lessons from the zebrafish model. Genome Med 3(12):83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Jong JL, Zon LI (2005) Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu Rev Genet 39:481–501

    Article  PubMed  Google Scholar 

  7. Davidson AJ, Zon LI (2004) The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. Oncogene 23(43):7233–7246

    Article  CAS  PubMed  Google Scholar 

  8. Paw BH, Zon LI (2000) Zebrafish: a genetic approach in studying hematopoiesis. Curr Opin Hematol 7(2):79–84

    Article  CAS  PubMed  Google Scholar 

  9. Im AP, Sehgal AR, Carroll MP et al (2014) DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia 28(9):1774–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lasho TL, Jimma T, Finke CM et al (2012) SRSF2 mutations in primary myelofibrosis: significant clustering with IDH mutations and independent association with inferior overall and leukemia-free survival. Blood 120(20):4168–4171

    Article  CAS  PubMed  Google Scholar 

  11. Pardanani A, Patnaik MM, Lasho TL et al (2010) Recurrent IDH mutations in high-risk myelodysplastic syndrome or acute myeloid leukemia with isolated del(5q). Leukemia 24(7):1370–1372

    Article  CAS  PubMed  Google Scholar 

  12. Caramazza D, Lasho TL, Finke CM et al (2010) IDH mutations and trisomy 8 in myelodysplastic syndromes and acute myeloid leukemia. Leukemia 24(12):2120–2122

    Article  CAS  PubMed  Google Scholar 

  13. Sasaki M, Knobbe CB, Munger JC et al (2012) IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488(7413):656–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shi X, He BL, Ma AC et al (2015) Functions of idh1 and its mutation in the regulation of developmental hematopoiesis in zebrafish. Blood 125(19):2974–2984

    Article  CAS  PubMed  Google Scholar 

  15. Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He BL, Shi X, Man CH, Ma AC et al (2014) Functions of flt3 in zebrafish hematopoiesis and its relevance to human acute myeloid leukemia. Blood 123(16):2518–2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma AC, Chung MI, Liang R et al (2010) A DEAB-sensitive aldehyde dehydrogenase regulates hematopoietic stem and progenitor cells development during primitive hematopoiesis in zebrafish embryos. Leukemia 24(12):2090–2099

    Article  CAS  PubMed  Google Scholar 

  18. Ma AC, Fan A, Ward AC et al (2009) A novel zebrafish jak2a(V581F) model shared features of human JAK2(V617F) polycythemia vera. Exp Hematol 37(12):1379.e4–1386.e4

    Article  Google Scholar 

  19. Ma AC, Chung MI, Liang R et al (2009) The role of survivin2 in primitive hematopoiesis during zebrafish development. Leukemia 23(4):712–720

    Article  CAS  PubMed  Google Scholar 

  20. Ma AC, Ward AC, Liang R et al (2007) The role of jak2a in zebrafish hematopoiesis. Blood 110(6):1824–1830

    Article  CAS  PubMed  Google Scholar 

  21. Ma A, Lin R, Chan PK et al (2007) The role of survivin in angiogenesis during zebrafish embryonic development. BMC Dev Biol 7:50

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ma AC, Liang R, Leung AY (2007) The role of phospholipase C gamma 1 in primitive hematopoiesis during zebrafish development. Exp Hematol 35(3):368–373

    Article  CAS  PubMed  Google Scholar 

  23. Jin H, Li L, Xu J et al (2012) Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop inhibiting Pu.1 expression. Blood 119(22):5239–5249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Renshaw SA, Loynes CA, Trushell DM et al (2006) A transgenic zebrafish model of neutrophilic inflammation. Blood 108(13):3976–3978

    Article  CAS  PubMed  Google Scholar 

  25. Ma AC, Lee HB, Clark KJ et al (2013) High efficiency in vivo genome engineering with a simplified 15-RVD GoldyTALEN design. PLoS One 8(5):e65259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kobayashi I, Kobayashi-Sun J, Kim AD et al (2014) Jam1a-Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling. Nature 512(7514):319–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stachura DL, Reyes JR, Bartunek P et al (2009) Zebrafish kidney stromal cell lines support multilineage hematopoiesis. Blood 114(2):279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakade S, Tsubota T, Sakane Y et al (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5:5560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Neff KL, Argue DP, Ma AC et al (2013) Mojo hand, a TALEN design tool for genome editing applications. BMC Bioinformatics 14:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Zebrafish research was supported by Faculty Core Zebrafish Facility, LKS Faculty of Medicine, HKU. This work was supported by HKU771613M, HKUST5/CRF/12R, CityU9/CRF/13G, HMRF02132326, HMRF03143756 and HKU Seed Funding for Basic Research (201401159004, 201411159098). AYHL is the Li Shu Fan Medical Foundation Professor in Haematology and received funding from its endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anskar Y. H. Leung M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ma, A.C.H., Shi, X., He, BL., Guo, Y., Leung, A.Y.H. (2017). A Zebrafish Model for Evaluating the Function of Human Leukemic Gene IDH1 and Its Mutation. In: Fortina, P., Londin, E., Park, J., Kricka, L. (eds) Acute Myeloid Leukemia. Methods in Molecular Biology, vol 1633. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7142-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7142-8_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7140-4

  • Online ISBN: 978-1-4939-7142-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics