Skip to main content

Detection of Differential DNA Methylation Under Stress Conditions Using Bisulfite Sequence Analysis

  • Protocol
  • First Online:
Plant Stress Tolerance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1631))

Abstract

DNA methylation is the most important epigenetic change affecting gene expression in plants grown under normal as well as under stress conditions. Therefore, researchers study differential DNA methylation under distinct environmental conditions and their relationship with transcriptome abundance. Up to date, more than 25 methods and techniques are available to detect DNA methylation based on different principles. Bisulfite sequencing method is considered as a gold standard since it is able to distinguish 5-methylcytosine from cytosine using the bisulfite treatment. Therefore, it is useful for qualitative and semiquantitative measurement of DNA methylation. However, the reliability of data obtaining from this technique is mainly depending on the efficiency of bisulfite conversion and number of sequencing clones representing the target-converted sequence. Therefore, it is labor intensive and time-consuming. Revolution of next generation DNA sequencing (NGS) has allowed researches to combine conventional bisulfite sequencing methods with high-throughput Illumina sequencing in a technique called whole genome bisulfite sequencing (WGBS). This technique allows a single nucleotide resolution of 5-methylcytosine on a genome scale. WGBS technique workflow involves DNA fragmentation, processing through end blunting, terminal A(s) addition at 3′ end and adaptor ligation, bisulfite treatment, PCR amplification, sequencing libraries and assembling, and finally alignment with the reference genome and data analysis. Despite the fact that WGBS is more reliable than the conventional clone-based bisulfite sequencing, it is costly, requires large amount of DNA and its output data is not easily handled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: A landscape takes shape. Cell 128:635–638

    Article  CAS  PubMed  Google Scholar 

  2. Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176

    Article  PubMed  Google Scholar 

  3. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yaish MWF, Peng M, Rothstein SJ (2009) AtMBD9 modulates Arabidopsis development through the dual epigenetic pathways of DNA methylation and histone acetylation. Plant J 59:123–135

    Article  CAS  PubMed  Google Scholar 

  5. Saze H, Tsugane K, Kanno T, Nishimura T (2012) DNA methylation in plants: Relationship to small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol 53:766–784

    Article  CAS  PubMed  Google Scholar 

  6. Erdmann RM, Souza AL, Clish CB, Gehring M (2014) 5-Hydroxymethylcytosine is not present in appreciable quantities in Arabidopsis DNA. G3 (Bethesda) 5:1–8

    Article  Google Scholar 

  7. Al-Lawati A, Al-Bahry S, Victor R, Al-Lawati AH, Yaish MW (2016) Salt stress alters DNA methylation levels in alfalfa (Medicago spp). Genet Mol Res 15:15018299

    Article  CAS  PubMed  Google Scholar 

  8. Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Meins F, Kovalchuk I (2010) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS One 5:e9514

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dyachenko OV, Zakharchenko NS, Shevchuk TV, Bohnert HJ, Cushman JC, Buryanov YI (2006) Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry (Mosc) 71:461–465

    Article  CAS  Google Scholar 

  10. Liang D, Zhang Z, Wu H, Huang C, Shuai P, Ye C-Y, Tang S, Wang Y, Yang L, Wang J, Yin W, Xia X (2014) Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress. BMC Genet 15:S9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Steward N (2002) Periodic DNA Methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746

    Article  CAS  PubMed  Google Scholar 

  12. Yaish MW ((2013)) DNA methylation-associated epigenetic changes in stress tolerance of plants. In: Rout GR, Das AB (eds) Molecular stress physiology of plants. Springer, Dordrecht, pp 427–440

    Google Scholar 

  13. Yaish MW, Colasanti J, Rothstein SJ (2011) The role of epigenetic processes in controlling flowering time in plants exposed to stress. J Exp Bot 62:3727–3735

    Article  CAS  PubMed  Google Scholar 

  14. Yaish MW, Peng M, Rothstein SJ (2013) Global DNA methylation analysis using Methyl-Sensitive Amplification Polymorphism (MSAP). Methods Mol Biol 1062:285–298

    Article  CAS  Google Scholar 

  15. Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2013) Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep 32:1151–1159

    Article  CAS  PubMed  Google Scholar 

  16. Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442:1046–1049

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Tollefsbol TO (2011) DNA Methylation detection: bisulfite genomic sequencing analysis. Methods Mol Biol 791:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biol 5:3

    Article  Google Scholar 

  19. Hardcastle TJ (2013) High-throughput sequencing of cytosine methylation in plant DNA. Plant Methods 9:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liao W-W, Yen M-R, Ju E, Hsu F-M, Lam L, Chen P-Y (2015) MethGo: a comprehensive tool for analyzing whole-genome bisulfite sequencing data. BMC Genomics 16:S11

    Article  PubMed  PubMed Central  Google Scholar 

  22. Urich MA, Nery JR, Lister R, Schmitz RJ, Ecker JR (2015) MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat Protoc 10:475–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee Y, Jin S, Duan S, Lim Y, Ng DPY, Lin X, Yeo GSH, Ding C (2014) Improved reduced representation bisulfite sequencing for epigenomic profiling of clinical samples. Biol Proced Online 16:1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ahlert D, Stegemann S, Kahlau S, Ruf S, Bock R (2009) Insensitivity of chloroplast gene expression to DNA methylation. Mol Genet Genomics 282:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fojtová M, Kovařı́k, A., and Matyášekek, R. (2001) Cytosine methylation of plastid genome in higher plants. Fact or artefact? Plant Sci 160:585–593

    Google Scholar 

  26. Wang J, Wang C, Long Y, Hopkins C, Kurup S, Liu K, King GJ, Meng J (2011) Universal endogenous gene controls for bisulphite conversion in analysis of plant DNA methylation. Plant Methods 7:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ziller MJ, Hansen KD, Meissner A, Aryee MJ (2015) Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing. Nat Methods 12:230–232

    Article  CAS  PubMed  Google Scholar 

  28. Stevens M, Cheng JB, Li D, Xie M, Hong C, Maire CL, Ligon KL, Hirst M, Marra MA, Costello JF, Wang T (2013) Estimating absolute methylation levels at single-CpG resolution from methylation enrichment and restriction enzyme sequencing methods. Genome Res 23:1541–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krueger F, Kreck B, Franke A, Andrews SR (2012) DNA methylome analysis using short bisulfite sequencing data. Nat Methods 9:145–151

    Article  CAS  PubMed  Google Scholar 

  30. Li L-C, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud W. Yaish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Al Harrasi, I., Al-Yahyai, R., Yaish, M.W. (2017). Detection of Differential DNA Methylation Under Stress Conditions Using Bisulfite Sequence Analysis. In: Sunkar, R. (eds) Plant Stress Tolerance. Methods in Molecular Biology, vol 1631. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7136-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7136-7_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7134-3

  • Online ISBN: 978-1-4939-7136-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics