Skip to main content

Probing Posttranslational Redox Modifications

  • Protocol
  • First Online:
Plant Stress Tolerance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1631))

  • 2660 Accesses

Abstract

Reactive molecular species (RMS) can damage DNA, lipids, and proteins but as signaling molecules they also affect the regulatory state of the cell. RMS consist of reactive oxygen (ROS), nitrogen (RNS), and carbonyl species (RCS). Besides their potentially destructive nature, RMS are able to modify proteins at the posttranslational level, resulting in regulation of structure, activity, interaction as well as localization. This chapter addresses methods to analyze and quantify posttranslational redox modifications in vitro and ex vivo, such as sulfenic acid generation of cysteine residues and oxidative carbonylation of proteins. In addition, by use of isothermal titration calorimetry, redox-dependent interaction studies of proteins will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mieyal JJ, Chock PB (2012) Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on s-glutathionylation. Antioxid Redox Signal 16:471–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walsh CT, Garneau-Tsodikova S, Gatto GJ (2005) Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 44:7342–7372

    Article  CAS  PubMed  Google Scholar 

  3. Seo J-W, Lee K-J (2004) Post-translational modifications and their biological functions: proteomic analysis and aystematic approaches. J Biochem Mol Biol 37:35–44

    CAS  PubMed  Google Scholar 

  4. Mock H-P, Dietz K-J (2016) Redox proteomics for the assessment of redox-related posttranslational regulation in plants. Biochim Biophys Acta 1864:967–973

    Article  CAS  PubMed  Google Scholar 

  5. Woo HA, Kang SW, Kim HK, Yang K-S, Chae HZ, Rhee SG (2003) Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J Biol Chem 278:47361–47364

    Article  CAS  PubMed  Google Scholar 

  6. Suzuki YJ, Carini M, Butterfield DA (2010) Protein carbonylation. Antioxid Redox Signal 12:323–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lennicke C, Rahn J, Lichtenfels R, Wessjohann LA, Seliger B (2015) Hydrogen peroxide - production, fate and role in redox signaling of tumor cells. Cell Commun Signal 13:39

    Google Scholar 

  8. Bartosz G (2009) Reactive oxygen species: destroyers or messengers? Biochem Pharmacol 77:1303–1315

    Article  CAS  PubMed  Google Scholar 

  9. Gupta V, Carroll KS (2014) Sulfenic acid chemistry, detection and cellular lifetime. Biochim Biophys Acta 1840:847–875

    Article  CAS  PubMed  Google Scholar 

  10. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38

    Article  CAS  PubMed  Google Scholar 

  11. Dalle-Donne I, Scaloni A, Butterfield DA (eds) (2006) Redox proteomics: from protein modifications to cellular dysfunction and diseases, Wiley-interscience series in mass spectrometry. Wiley-Interscience, Hoboken, N.J

    Google Scholar 

  12. Havé M, Leitao L, Bagard M, Castell J-F, Repellin A, Adams W (2015) Protein carbonylation during natural leaf senescence in winter wheat, as probed by fluorescein-5-thiosemicarbazide. Plant Biol (Stuttg) 17:973–979

    Article  Google Scholar 

  13. Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  CAS  PubMed  Google Scholar 

  14. Romero-Puertas MC, Palma JM, Gomez M, Del Rio LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686

    Article  CAS  Google Scholar 

  15. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  16. Todd MJ, Gomez J (2001) Enzyme kinetics determined using calorimetry: a general assay for enzyme activity? Anal Biochem 296:179–187

    Article  CAS  PubMed  Google Scholar 

  17. Chaires JB (2008) Calorimetry and thermodynamics in drug design. Annu Rev Biophys 37:135–151

    Article  CAS  PubMed  Google Scholar 

  18. Freyer MW, Lewis EA (2008) Isothermal titration calorimetry: experimental design, data dnalysis, and probing macromolecule/ligand binding and kinetic interactions. In: Biophysical tools for biologists, volume one: in vitro techniques, vol 84. Elsevier, Amsterdam; Boston, pp 79–113

    Google Scholar 

  19. Barranco-Medina S, Kakorin S, Lázaro JJ, Dietz K-J (2008) Thermodynamics of the dimer−decamer transition of reduced human and plant 2-Cys peroxiredoxin. Biochemistry 47:7196–7204

    Article  CAS  PubMed  Google Scholar 

  20. Liebthal M, Strüve M, Li X, Hertle Y, Maynard D, Hellweg T et al (2016) Redox-dependent conformational dynamics of decameric 2-cysteine Peroxiredoxin and its interaction with Cyclophilin 20-3. Plant Cell Physiol 57:1415–1425

    CAS  PubMed  Google Scholar 

  21. Matsui K, Sugimoto K, Kakumyan P, Khorobrykh SA, Mano J (2010) Volatile oxylipins and related compounds formed under stress in plants. In: Armstrong D (ed) Lipidomics. Humana Press, Totowa, NJ, pp 17–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Josef Dietz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Treffon, P., Liebthal, M., Telman, W., Dietz, KJ. (2017). Probing Posttranslational Redox Modifications. In: Sunkar, R. (eds) Plant Stress Tolerance. Methods in Molecular Biology, vol 1631. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7136-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7136-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7134-3

  • Online ISBN: 978-1-4939-7136-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics