Skip to main content

Lipid Identification by Untargeted Tandem Mass Spectrometry Coupled with Ultra-High-Pressure Liquid Chromatography

  • Protocol
  • First Online:
Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1609))

Abstract

Lipidomics refers to the large-scale study of lipids in biological systems (Wenk, Nat Rev Drug Discov 4(7):594–610, 2005; Rolim et al., Gene 554(2):131–139, 2015). From a mass spectrometric point of view, by lipidomics we understand targeted or untargeted mass spectrometric analysis of lipids using either liquid chromatography (LC) (Castro-Perez et al., J Proteome Res 9(5):2377–2389, 2010) or shotgun (Han and Gross, Mass Spectrom Rev 24(3):367–412, 2005) approaches coupled with tandem mass spectrometry. This chapter describes the former methodology, which is becoming rapidly the preferred method for lipid identification owing to similarities with established omics workflows, such as proteomics (Washburn et al., Nat Biotechnol 19(3):242–247, 2001) or genomics (Yadav, J Biomol Tech: JBT 18(5):277, 2007). The workflow described consists in lipid extraction using a modified Bligh and Dyer method (Bligh and Dyer, Can J Biochem Physiol 37(8):911–917, 1959), ultra high pressure liquid chromatography fractionation of lipid samples on a reverse phase C18 column, followed by tandem mass spectrometric analysis and in silico database search for lipid identification based on MSMS spectrum matching (Kind et al., Nat Methods 10(8):755–758, 2013; Yamada et al., J Chromatogr A 1292:211–218, 2013; Taguchi and Ishikawa, J Chromatogr A 1217(25):4229–4239, 2010; Peake et al., Thermoscientifices 1–3, 2015) and accurate mass of parent ion (Sud et al., Nucleic Acids Res 35(database issue):D527–D532, 2007; Wishart et al., Nucleic Acids Res 35(database):D521–D526, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4(7):594–610. doi:10.1038/nrd1776

    Article  CAS  PubMed  Google Scholar 

  2. Rolim AEH, Henrique-Araújo R, Ferraz EG, de Araújo Alves Dultra FK, Fernandez LG (2015) Lipidomics in the study of lipid metabolism: current perspectives in the omic sciences. Gene 554(2):131–139. doi:10.1016/j.gene.2014.10.039

    Article  CAS  PubMed  Google Scholar 

  3. Fahy E, Cotter D, Sud M, Subramaniam S (2011) Lipid classification, structures and tools. Biochim Biophys Acta 1811(11):637–647. doi:10.1016/j.bbalip.2011.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill AH, Murphy RC, Raetz CRH, Russell DW, Subramaniam S (2007) LMSD: LIPID MAPS structure database. Nucleic Acids Res 35(Database issue):D527–D532. doi:10.1093/nar/gkl838

    Article  CAS  PubMed  Google Scholar 

  5. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, MacInnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L (2007) HMDB: the human metabolome database. Nucleic Acids Res 35. (Database):D521-D526. doi:10.1093/nar/gkl923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fahy E, Subramaniam S, Brown H, Glass C, Merrill JA, Murphy R, Raetz C, Russell D, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, Vannieuwenhze M, White S, Witztum J, Dennis EA (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861. PubMed ID: 15722563

    Article  CAS  PubMed  Google Scholar 

  7. Fahy E, Subramaniam S, Murphy R, Nishijima M, Raetz C, Shimizu T, Spener F, van Meer G, Wakelam M, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50:S9–S14. PubMed ID: 19098281

    Article  PubMed  PubMed Central  Google Scholar 

  8. Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24(3):367–412. doi:10.1002/mas.20023

    Article  CAS  PubMed  Google Scholar 

  9. Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247. doi:10.1038/85686

    Article  CAS  PubMed  Google Scholar 

  10. Yadav SP (2007) The wholeness in suffix -omics, -omes, and the word om. J Biomol Tech: JBT 18(5):277

    PubMed  PubMed Central  Google Scholar 

  11. Gugiu BG, Mesaros CA, Sun M, Gu X, Crabb JW, Salomon RG (2006) Identification of oxidatively truncated ethanolamine phospholipids in retina and their generation from polyunsaturated phosphatidylethanolamines. Chem Res Toxicol 19(2):262–271. doi:10.1021/tx050247f

    Article  CAS  PubMed  Google Scholar 

  12. Folch J, Ascoli I, Lees M, Meath JA, leBaron N (1951) Preparation of lipide extracts from brain tissue. J Biol Chem 191(2):833–841

    CAS  PubMed  Google Scholar 

  13. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  14. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49(5):1137–1146. doi:10.1194/jlr.D700041-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Castro-Perez JM, Kamphorst J, DeGroot J, Lafeber F, Goshawk J, Yu K, Shockcor JP, Vreeken RJ, Hankemeier T (2010) Comprehensive LC-MS E lipidomic analysis using a shotgun approach and its application to biomarker detection and identification in osteoarthritis patients. J Proteome Res 9(5):2377–2389. doi:10.1021/pr901094j

    Article  CAS  PubMed  Google Scholar 

  16. Tie C, Hu T, Jia Z-X, Zhang J-L (2015) Automatic identification approach for high-performance liquid chromatography-multiple reaction monitoring fatty acid global profiling. Anal Chem 87(16):8181–8185. doi:10.1021/acs.analchem.5b00799

    Article  CAS  PubMed  Google Scholar 

  17. Yamada T, Uchikata T, Sakamoto S, Yokoi Y, Fukusaki E, Bamba T (2013) Development of a lipid profiling system using reverse-phase liquid chromatography coupled to high-resolution mass spectrometry with rapid polarity switching and an automated lipid identification software. J Chromatogr A 1292:211–218. doi:10.1016/j.chroma.2013.01.078

    Article  CAS  PubMed  Google Scholar 

  18. Taguchi R, Ishikawa M (2010) Precise and global identification of phospholipid molecular species by an orbitrap mass spectrometer and automated search engine lipid search. J Chromatogr A 1217(25):4229–4239. doi:10.1016/j.chroma.2010.04.034

    Article  CAS  PubMed  Google Scholar 

  19. Kiyonami R, Peake DA, Liu X, and Huang Y (2015) Large scale lipid profiling of a human serum lipidome using a high resolution accurate mass LC/MS/MS approach. Presented at the LIPID MAPS annual meeting, La Jolla, CA, 12–13 May 2015

    Google Scholar 

  20. Kind T, Liu K-H, Lee DY, DeFelice B, Meissen JK, Fiehn O (2013) LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods 10(8):755–758. doi:10.1038/nmeth.2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kang YP, Lee WJ, Hong JY, Lee SB, Park JH, Kim D, Park S, Park C-S, Park S-W, Kwon SW (2014) Novel approach for analysis of Bronchoalveolar lavage fluid (BALF) using HPLC-QTOF-MS-based lipidomics: lipid levels in asthmatics and corticosteroid-treated asthmatic patients. J Proteome Res 13(9):3919–3929. doi:10.1021/pr5002059

    Article  CAS  PubMed  Google Scholar 

  22. Peake DA, Kiyonami R, Yokoi Y, Fukamachi Y (2015) Processing of a complex lipid dataset for the NIST inter-laboratory comparison exercise for lipidomics measurements in human serum and plasma. Presented at the ASMS annual meeting, Saint Louis, MO, 31st May–4th June 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel B. Gugiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Gugiu, G.B. (2017). Lipid Identification by Untargeted Tandem Mass Spectrometry Coupled with Ultra-High-Pressure Liquid Chromatography. In: Bhattacharya, S. (eds) Lipidomics. Methods in Molecular Biology, vol 1609. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6996-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6996-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6995-1

  • Online ISBN: 978-1-4939-6996-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics