Skip to main content

High-Performance Chromatographic Separation of Cerebrosides

  • Protocol
  • First Online:
Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1609))

Abstract

High-performance thin-layer chromatography (HPTLC) is a very robust, fast, and inexpensive technique that enables separation of complex mixtures. Here, we describe the analytical separation of glucosylceramide and galactosylceramide by HPTLC. This technique can be used for quantitation purposes but also with small modification for subsequent mass spectrum analyses for structural determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuchs B, Suss R, Teuber K, Eibisch M, Schiller J (2011) Lipid analysis by thin-layer chromatography--a review of the current state. J Chromatogr A 1218(19):2754–2774. doi:10.1016/j.chroma.2010.11.066

    Article  CAS  PubMed  Google Scholar 

  2. Meisen I, Mormann M, Muthing J (2011) Thin-layer chromatography, overlay technique and mass spectrometry: a versatile triad advancing glycosphingolipidomics. Biochim Biophys Acta 1811(11):875–896

    Article  CAS  PubMed  Google Scholar 

  3. Nakamura K, Suzuki Y, Goto-Inoue N, Yoshida-Noro C, Suzuki A (2006) Structural characterization of neutral glycosphingolipids by thin-layer chromatography coupled to matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight MS/MS. Anal Chem 78(16):5736–5743. doi:10.1021/ac0605501

    Article  CAS  PubMed  Google Scholar 

  4. Levery SB, Momany M, Lindsey R, Toledo MS, Shayman JA, Fuller M, Brooks K, Doong RL, Straus AH, Takahashi HK (2002) Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP-Glc:ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth. FEBS Lett 525(1-3):59–64

    Article  CAS  PubMed  Google Scholar 

  5. Rollin-Pinheiro R, Liporagi-Lopes LC, de Meirelles JV, LMd S, Barreto-Bergter E (2014) Characterization of Scedosporium apiospermum glucosylceramides and their involvement in fungal development and macrophage functions. PLoS One 9(5):e98149

    Article  PubMed  PubMed Central  Google Scholar 

  6. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  7. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  8. Schnaar RL (1994) Isolation of glycosphingolipids. Methods Enzymol 230:348–370

    Article  CAS  PubMed  Google Scholar 

  9. CWH X (2010) Lipid analysis-isolation, separation, identification and lipidomic analysis. Oily Press, Bridgwater, UK

    Google Scholar 

  10. Fewou SN, Bussow H, Schaeren-Wiemers N, Vanier MT, Macklin WB, Gieselmann V, Eckhardt M (2005) Reversal of non-hydroxy:alpha-hydroxy galactosylceramide ratio and unstable myelin in transgenic mice overexpressing UDP-galactose:ceramide galactosyltransferase. J Neurochem 94(2):469–481

    Article  CAS  PubMed  Google Scholar 

  11. Pinto MR, Rodrigues ML, Travassos LR, Haido RMT, Wait R, Barreto-Bergter E (2002) Characterization of glucosylceramides in Pseudallescheria boydii and their involvement in fungal differentiation. Glycobiology 12(4):251–260

    Article  CAS  PubMed  Google Scholar 

  12. Sakaki T, Zahringer U, Warnecke DC, Fahl A, Knogge W, Heinz E (2001) Sterol glycosides and cerebrosides accumulate in Pichia Pastoris, Rhynchosporium secalis and other fungi under normal conditions or under heat shock and ethanol stress. Yeast 18(8):679–695. doi:10.1002/yea.720

    Article  CAS  PubMed  Google Scholar 

  13. Saito K, Maekawa K, Ishikawa M, Senoo Y, Urata M, Murayama M, Nakatsu N, Yamada H, Saito Y (2014) Glucosylceramide and lysophosphatidylcholines as potential blood biomarkers for drug-induced hepatic phospholipidosis. Toxicol Sci 141(2):377–386. doi:10.1093/toxsci/kfu132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brade L, Vielhaber G, Heinz E, Brade H (2000) In vitro characterization of anti-glucosylceramide rabbit antisera. Glycobiology 10(6):629–636

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Sicard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sicard, R., Landgraf, R. (2017). High-Performance Chromatographic Separation of Cerebrosides. In: Bhattacharya, S. (eds) Lipidomics. Methods in Molecular Biology, vol 1609. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6996-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6996-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6995-1

  • Online ISBN: 978-1-4939-6996-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics