Skip to main content

Isolation of Neuronal Synaptic Membranes by Sucrose Gradient Centrifugation

  • Protocol
  • First Online:
Lipidomics

Abstract

Sucrose gradient centrifugation is a very useful technique for isolating specific membrane types based on their size and density. This is especially useful for detecting fatty acids and lipid molecules that are targeted to specialized membranes. Without fractionation, these types of molecules could be below the levels of detection after being diluted out by the more abundant lipid molecules with a more ubiquitous distribution throughout the various cell membranes. Isolation of specific membrane types where these lipids are concentrated allows for their detection and analysis. We describe herein our synaptic membrane isolation protocol that produces excellent yield and clear resolution of five major membrane fractions from a starting neural tissue homogenate: P1 (Nuclear), P2 (Cytoskeletal), P3 (Neurosynaptosomal), PSD (Post-synaptic Densities), and SV (Synaptic Vesicle).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krebs A, Villa C, Edwards PC, Schertler GF (1998) Characterisation of an improved two-dimensional p22121 crystal from bovine rhodopsin. J Mol Biol 282(5):991–1003. doi:10.1006/jmbi.1998.2070

    Article  CAS  PubMed  Google Scholar 

  2. Anderson RE, Maude MB (1970) Phospholipids of bovine outer segments. Biochemistry 9(18):3624–3628

    Article  CAS  PubMed  Google Scholar 

  3. Redburn DA, Thomas TN (1979) Isolation of synaptosomal fractions from rabbit retina. J Neurosci Methods 1(3):235–242

    Article  CAS  PubMed  Google Scholar 

  4. Bennett LD, Hopiavuori BR, Brush RS, Chan M, Van Hook MJ, Thoreson WB, Anderson RE (2014) Examination of VLC-PUFA-deficient photoreceptor terminals. Invest Ophthalmol Vis Sci 55(7):4063–4072. doi:10.1167/iovs.14-13997

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hopiavuori BR, Bennett LD, Brush RS, Van Hook MJ, Thoreson WB, Anderson RE (2016) Very long-chain fatty acids support synaptic structure and function in the mammalian retina. OCL 23(1):D113

    Article  Google Scholar 

  6. VanGuilder HD, Brucklacher RM, Patel K, Ellis RW, Freeman WM, Barber AJ (2008) Diabetes downregulates presynaptic proteins and reduces basal synapsin I phosphorylation in rat retina. Eur J Neurosci 28(1):1–11. doi:10.1111/j.1460-9568.2008.06322.x

    Article  PubMed  Google Scholar 

  7. VanGuilder HD, Yan H, Farley JA, Sonntag WE, Freeman WM (2010) Aging alters the expression of neurotransmission-regulating proteins in the hippocampal synaptoproteome. J Neurochem 113(6):1577–1588. doi:10.1111/j.1471-4159.2010.06719.x

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Angus DW, Baker JA, Mason R, Martin IJ (2008) The potential influence of CO2, as an agent for euthanasia, on the pharmacokinetics of basic compounds in rodents. Drug Metab Dispos 36(2):375–379. doi:10.1124/dmd.107.018879

    Article  CAS  PubMed  Google Scholar 

  9. Martoft L, Stodkilde-Jorgensen H, Forslid A, Pedersen HD, Jorgensen PF (2003) CO2 induced acute respiratory acidosis and brain tissue intracellular pH: a 31P NMR study in swine. Lab Anim 37(3):241–248. doi:10.1258/002367703766453092

    Article  CAS  PubMed  Google Scholar 

  10. Mikulec AA, Pittson S, Amagasu SM, Monroe FA, MacIver MB (1998) Halothane depresses action potential conduction in hippocampal axons. Brain Res 796(1–2):231–238

    Article  CAS  PubMed  Google Scholar 

  11. Silva JH, Gomez MV, Silva JH, Guatimosim C, Gomez RS (2008) Halothane induces vesicular and carrier-mediated release of [3H]serotonin from rat brain cortical slices. Neurochem Int 52(6):1240–1246. doi:10.1016/j.neuint.2008.01.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Heather VanGuilder Starkey for sharing her isolation protocols with us.

Nicolas Bazan for sending us the rabbit anti-VGLUT2 antibody (Dcf68) cloned by his laboratory.

This work was supported by the following grants:

EY024520, EY021716 to WMF

EY023202 to DRM

NS090117, EY004149, EY000871, and EY021725 (P30 Vision Core Grant) to REA

NS089358 to BRH

EY022071, EY025256, to NAM

Foundation Fighting Blindness to REA and NAM

Unrestricted grant from Research to Prevent Blindness, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blake R. Hopiavuori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hopiavuori, B.R. et al. (2017). Isolation of Neuronal Synaptic Membranes by Sucrose Gradient Centrifugation. In: Bhattacharya, S. (eds) Lipidomics. Methods in Molecular Biology, vol 1609. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6996-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6996-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6995-1

  • Online ISBN: 978-1-4939-6996-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics