Skip to main content

Isolation of Lipid Raft Proteins from CD133+ Cancer Stem Cells

  • Protocol
  • First Online:
Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1609))

Abstract

Pancreatic cancer cells expressing the surface markers CD133 have been widely reported as cancer stem cells and mainly responsible for tumor recurrence and chemoresistance in pancreatic cancer. In spite of its role as a stem cell marker in pancreatic cancer, its function remains elusive. CD133 (also known as prominin-1) is a pentaspan glycoprotein predominantly localized in lipid rafts, specialized membrane microdomains enriched in crucial signaling proteins. Coexistence of CD133 with these signaling proteins can modulate various signaling pathways that might be responsible for aggressive phenotype of CD133+ cells. This chapter describes a detailed protocol to isolate lipid rafts from CD133+ tumor initiating cells. Purified lipid rafts can be investigated further for protein or lipid composition by mass spectrometry that can shed some light on functional role of CD133 protein in these cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bednar F, Simeone DM (2009) Pancreatic cancer stem cells and relevance to cancer treatments. J Cell Biochem 107(1):40–45. doi:10.1002/jcb.22093

    Article  CAS  PubMed  Google Scholar 

  2. Bhagwandin VJ, Shay JW (2009) Pancreatic cancer stem cells: fact or fiction? Biochim Biophys Acta 1792(4):248–259. doi:10.1016/j.bbadis.2009.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Donahue TR, Dawson DW (2011) Nodal/Activin signaling: a novel target for pancreatic cancer stem cell therapy. Cell Stem Cell 9(5):383–384. doi:10.1016/j.stem.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  4. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323. doi:10.1016/j.stem.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  5. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037. doi:10.1158/0008-5472.can-06-2030

    Article  CAS  PubMed  Google Scholar 

  6. Banerjee S, Nomura A, Sangwan V, Chugh R, Dudeja V, Vickers S, Saluja AK (2014) CD133+ tumor initiating cells (TIC) in a syngenic murine model of pancreatic cancer respond to Minnelide. Clin Cancer Res doi:10.1158/1078-0432.CCR-13-2947

  7. Corbeil D, Marzesco AM, Wilsch-Brauninger M, Huttner WB (2010) The intriguing links between prominin-1 (CD133), cholesterol-based membrane microdomains, remodeling of apical plasma membrane protrusions, extracellular membrane particles, and (neuro)epithelial cell differentiation. FEBS Lett 584(9):1659–1664. doi:10.1016/j.febslet.2010.01.050

    Article  CAS  PubMed  Google Scholar 

  8. Marzesco AM (2013) Prominin-1-containing membrane vesicles: origins, formation, and utility. Adv Exp Med Biol 777:41–54. doi:10.1007/978-1-4614-5894-4_3

    Article  CAS  PubMed  Google Scholar 

  9. Maw MA, Corbeil D, Koch J, Hellwig A, Wilson-Wheeler JC, Bridges RJ, Kumaramanickavel G, John S, Nancarrow D, Roper K, Weigmann A, Huttner WB, Denton MJ (2000) A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 9(1):27–34

    Article  CAS  PubMed  Google Scholar 

  10. Roper K, Corbeil D, Huttner WB (2000) Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2(9):582–592. doi:10.1038/35023524

    Article  CAS  PubMed  Google Scholar 

  11. Giebel B, Corbeil D, Beckmann J, Hohn J, Freund D, Giesen K, Fischer J, Kogler G, Wernet P (2004) Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood 104(8):2332–2338. doi:10.1182/blood-2004-02-0511

    Article  CAS  PubMed  Google Scholar 

  12. McCaffrey LM, Macara IG (2011) Epithelial organization, cell polarity and tumorigenesis. Trends Cell Biol 21(12):727–735. doi:10.1016/j.tcb.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  13. Martin-Belmonte F, Perez-Moreno M (2012) Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer 12(1):23–38. doi:10.1038/nrc3169

    CAS  Google Scholar 

  14. Bose R, Wrana JL (2006) Regulation of Par6 by extracellular signals. Curr Opin Cell Biol 18(2):206–212. doi:10.1016/j.ceb.2006.02.005

    Article  CAS  PubMed  Google Scholar 

  15. Gomez-Lopez S, Lerner RG, Petritsch C (2014) Asymmetric cell division of stem and progenitor cells during homeostasis and cancer. Cell Mol Life Sci 71(4):575–597. doi:10.1007/s00018-013-1386-1

    Article  CAS  PubMed  Google Scholar 

  16. Lathia JD, Hitomi M, Gallagher J, Gadani SP, Adkins J, Vasanji A, Liu L, Eyler CE, Heddleston JM, Wu Q, Minhas S, Soeda A, Hoeppner DJ, Ravin R, McKay RD, McLendon RE, Corbeil D, Chenn A, Hjelmeland AB, Park DM, Rich JN (2011) Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis 2:e200. doi:10.1038/cddis.2011.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Su YJ, Lin WH, Chang YW, Wei KC, Liang CL, Chen SC, Lee JL (2015) Polarized cell migration induces cancer type-specific CD133/integrin/Src/Akt/GSK3beta/beta-catenin signaling required for maintenance of cancer stem cell properties. Oncotarget 6(35):38029–38045. doi:10.18632/oncotarget.5703

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulagna Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Gupta, V.K., Banerjee, S. (2017). Isolation of Lipid Raft Proteins from CD133+ Cancer Stem Cells. In: Bhattacharya, S. (eds) Lipidomics. Methods in Molecular Biology, vol 1609. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6996-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6996-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6995-1

  • Online ISBN: 978-1-4939-6996-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics