Skip to main content

Computational Functional Analysis of Lipid Metabolic Enzymes

  • Protocol
  • First Online:
Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1609))

Abstract

The computational analysis of enzymes that participate in lipid metabolism has both common and unique challenges when compared to the whole protein universe. Some of the hurdles that interfere with the functional annotation of lipid metabolic enzymes that are common to other pathways include the definition of proper starting datasets, the construction of reliable multiple sequence alignments, the definition of appropriate evolutionary models, and the reconstruction of phylogenetic trees with high statistical support, particularly for large datasets. Most enzymes that take part in lipid metabolism belong to complex superfamilies with many members that are not involved in lipid metabolism. In addition, some enzymes that do not have sequence similarity catalyze similar or even identical reactions. Some of the challenges that, albeit not unique, are more specific to lipid metabolism refer to the high compartmentalization of the routes, the catalysis in hydrophobic environments and, related to this, the function near or in biological membranes.

In this work, we provide guidelines intended to assist in the proper functional annotation of lipid metabolic enzymes, based on previous experiences related to the phospholipase D superfamily and the annotation of the triglyceride synthesis pathway in algae. We describe a pipeline that starts with the definition of an initial set of sequences to be used in similarity-based searches and ends in the reconstruction of phylogenies. We also mention the main issues that have to be taken into consideration when using tools to analyze subcellular localization, hydrophobicity patterns, or presence of transmembrane domains in lipid metabolic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eirin-Lopez JM, Rebordinos L, Rooney AP, Rozas J (2012) The birth-and-death evolution of multigene families revisited. Genome Dyn 7:170–196. doi:10.1159/000337119

    Article  CAS  PubMed  Google Scholar 

  2. Beligni MV, Bagnato C, Prados MB, Bondino H, Laxalt AM, Munnik T, Ten Have A (2015) The diversity of algal phospholipase D homologs revealed by biocomputational analysis. J Phycol 51(5):943–962. doi:10.1111/jpy.12334

    Article  CAS  PubMed  Google Scholar 

  3. Brown JR, Auger KR (2011) Phylogenomics of phosphoinositide lipid kinases: perspectives on the evolution of second messenger signaling and drug discovery. BMC Evol Biol 11:4. doi:10.1186/1471-2148-11-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao H (2011) Structure-function analysis of diacylglycerol acyltransferase sequences from 70 organisms. BMC Res Notes 4:249. doi:10.1186/1756-0500-4-249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Das A, Davis MA, Rudel LL (2008) Identification of putative active site residues of ACAT enzymes. J Lipid Res 49(8):1770–1781. doi:10.1194/jlr.M800131-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wilson D, Pethica R, Zhou Y, Talbot C, Vogel C, Madera M, Chothia C, Gough J (2009) SUPERFAMILY–sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 37(Database issue):D380–D386. doi:10.1093/nar/gkn762

    Article  CAS  PubMed  Google Scholar 

  7. Schomburg I, Chang A, Placzek S, Sohngen C, Rother M, Lang M, Munaretto C, Ulas S, Stelzer M, Grote A, Scheer M, Schomburg D (2013) BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res 41(Database issue):D764–D772. doi:10.1093/nar/gks1049

    Article  CAS  PubMed  Google Scholar 

  8. Aoki KF, Kanehisa M (2005) Using the KEGG database resource. Curr Protoc Bioinformatics Chapter 1:Unit 1 12. doi:10.1002/0471250953.bi0112s11

  9. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40(Database issue):D290–D301. doi:10.1093/nar/gkr1065

    Article  CAS  PubMed  Google Scholar 

  10. Sigrist CJ, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, Bairoch A, Bucher P (2002) PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform 3(3):265–274

    Article  CAS  PubMed  Google Scholar 

  11. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics (Oxford, England) 30(9):1236–1240. doi:10.1093/bioinformatics/btu031

    Article  CAS  Google Scholar 

  12. Haft DH, Selengut JD, White O (2003) The TIGRFAMs database of protein families. Nucleic Acids Res 31(1):371–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(Database issue):D204–D212. doi:10.1093/nar/gku989

    Article  Google Scholar 

  15. Information NCBI (2016) http://www.ncbi.nlm.nih.gov/. Accessed 15 May 2016

  16. Mashima J, Kodama Y, Kosuge T, Fujisawa T, Katayama T, Nagasaki H, Okuda Y, Kaminuma E, Ogasawara O, Okubo K, Nakamura Y, Takagi T (2016) DNA data bank of Japan (DDBJ) progress report. Nucleic Acids Res 44(D1):D51–D57. doi:10.1093/nar/gkv1105

    Article  PubMed  Google Scholar 

  17. Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, Smirnova T, Grigoriev IV, Dubchak I (2014) The genome portal of the department of energy joint genome institute: 2014 updates. Nucleic Acids Res 42(Database issue):D26–D31. doi:10.1093/nar/gkt1069

    Article  CAS  PubMed  Google Scholar 

  18. Institute TB (2016) https://www.broadinstitute.org/. Accessed 10 May 2016

  19. Aurrecoechea C, Heiges M, Wang H, Wang Z, Fischer S, Rhodes P, Miller J, Kraemer E, Stoeckert CJ Jr, Roos DS, Kissinger JC (2007) ApiDB: integrated resources for the apicomplexan bioinformatics resource center. Nucleic Acids Res 35(Database issue):D427–D430. doi:10.1093/nar/gkl880

    Article  CAS  PubMed  Google Scholar 

  20. Institute WTS (2016) http://www.sanger.ac.uk/. Accessed 15 May 2016

  21. Institute JCV (2016) http://www.jcvi.org/cms/home/. Accessed 1 May 2016

  22. Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, Bateman A, Eddy SR (2015) HMMER web server: 2015 update. Nucleic Acids Res 43(W1):W30–W38. doi:10.1093/nar/gkv397

    Article  PubMed  PubMed Central  Google Scholar 

  23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. doi:10.1016/s0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  24. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Z, Schaffer AA, Miller W, Madden TL, Lipman DJ, Koonin EV, Altschul SF (1998) Protein sequence similarity searches using patterns as seeds. Nucleic Acids Res 26(17):3986–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics (Oxford, England) 28(23):3150–3152. doi:10.1093/bioinformatics/bts565

    Article  CAS  Google Scholar 

  27. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217. doi:10.1006/jmbi.2000.4042

    Article  CAS  PubMed  Google Scholar 

  28. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. doi:10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pei J, Kim BH, Grishin NV (2008) PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 36(7):2295–2300. doi:10.1093/nar/gkn072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39(Web Server issue):W29–W37. doi:10.1093/nar/gkr367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nicholas KB, Nicholas HB, Deerfield D (1997) GeneDoc: analysis and visualisation of genetic variation. EMBnet News 4:14

    Google Scholar 

  33. Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics (Oxford, England) 30(22):3276–3278. doi:10.1093/bioinformatics/btu531

    Article  CAS  Google Scholar 

  34. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224. doi:10.1093/molbev/msp259

    Article  CAS  PubMed  Google Scholar 

  35. Criscuolo A, Gribaldo S (2010) BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 10:210. doi:10.1186/1471-2148-10-210

    Article  PubMed  PubMed Central  Google Scholar 

  36. Thompson JD, Thierry JC, Poch O (2003) RASCAL: rapid scanning and correction of multiple sequence alignments. Bioinformatics (Oxford, England) 19(9):1155–1161

    Article  CAS  Google Scholar 

  37. Muller J, Creevey CJ, Thompson JD, Arendt D, Bork P (2010) AQUA: automated quality improvement for multiple sequence alignments. Bioinformatics (Oxford, England) 26(2):263–265. doi:10.1093/bioinformatics/btp651

    Article  CAS  Google Scholar 

  38. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics (Oxford, England) 21(9):2104–2105. doi:10.1093/bioinformatics/bti263

    Article  CAS  Google Scholar 

  39. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England) 30(9):1312–1313. doi:10.1093/bioinformatics/btu033

    Article  CAS  Google Scholar 

  40. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321. doi:10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  41. Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44(W1):W232–W235. doi:10.1093/nar/gkw256

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542. doi:10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  43. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29(8):1969–1973. doi:10.1093/molbev/mss075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. doi:10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12(1):7–8. doi:10.1038/nmeth.3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2(4):953–971. doi:10.1038/nprot.2007.131

    Article  CAS  PubMed  Google Scholar 

  47. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35(Web Server issue):W585–W587. doi:10.1093/nar/gkm259

    Article  PubMed  PubMed Central  Google Scholar 

  48. Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8(5):978–984. doi:10.1110/ps.8.5.978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241(3):779–786

    Article  CAS  PubMed  Google Scholar 

  50. Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S (2004) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17(4):349–356. doi:10.1093/protein/gzh037

    Article  CAS  PubMed  Google Scholar 

  51. Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugiere S, Hippler M, Ferro M, Bruley C, Peltier G, Vallon O, Cournac L (2012) PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol 29(12):3625–3639. doi:10.1093/molbev/mss178

    Article  CAS  PubMed  Google Scholar 

  52. Gschloessl B, Guermeur Y, Cock JM (2008) HECTAR: a method to predict subcellular targeting in heterokonts. BMC Bioinformatics 9:393. doi:10.1186/1471-2105-9-393

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zuegge J, Ralph S, Schmuker M, McFadden GI, Schneider G (2001) Deciphering apicoplast targeting signals--feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene 280(1–2):19–26

    Google Scholar 

  54. Gasteiger E, Hoogland C, Gattiker A, Se D, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, NJ, pp 571–607. doi:10.1385/1-59259-890-0:571

    Chapter  Google Scholar 

  55. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580. doi:10.1006/jmbi.2000.4315

    Article  CAS  PubMed  Google Scholar 

  56. Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics (Oxford, England) 17(9):849–850

    Article  CAS  Google Scholar 

  57. Dobson L, Remenyi I, Tusnady GE (2015) CCTOP: a consensus constrained TOPology prediction web server. Nucleic Acids Res 43(W1):W408–W412. doi:10.1093/nar/gkv451

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kanz C, Aldebert P, Althorpe N, Baker W, Baldwin A, Bates K, Browne P, van den Broek A, Castro M, Cochrane G, Duggan K, Eberhardt R, Faruque N, Gamble J, Diez FG, Harte N, Kulikova T, Lin Q, Lombard V, Lopez R, Mancuso R, McHale M, Nardone F, Silventoinen V, Sobhany S, Stoehr P, Tuli MA, Tzouvara K, Vaughan R, Wu D, Zhu W, Apweiler R (2005) The EMBL nucleotide sequence database. Nucleic Acids Res 33(Database issue):D29–D33. doi:10.1093/nar/gki098

    Article  CAS  PubMed  Google Scholar 

  59. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kemena C, Notredame C (2009) Upcoming challenges for multiple sequence alignment methods in the high-throughput era. Bioinformatics (Oxford, England) 25(19):2455–2465. doi:10.1093/bioinformatics/btp452

    Article  CAS  Google Scholar 

  61. Thompson JD, Plewniak F, Ripp R, Thierry JC, Poch O (2001) Towards a reliable objective function for multiple sequence alignments. J Mol Biol 314(4):937–951. doi:10.1006/jmbi.2001.5187

    Article  CAS  PubMed  Google Scholar 

  62. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55(4):539–552. doi:10.1080/10635150600755453

    Article  PubMed  Google Scholar 

  63. Nylander JA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics (Oxford, England) 24(4):581–583. doi:10.1093/bioinformatics/btm388

    Article  CAS  Google Scholar 

  64. Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4(6):1581–1590. doi:10.1002/pmic.200300776

    Article  CAS  PubMed  Google Scholar 

  65. Jiroutova K, Horak A, Bowler C, Obornik M (2007) Tryptophan biosynthesis in stramenopiles: eukaryotic winners in the diatom complex chloroplast. J Mol Evol 65(5):496–511. doi:10.1007/s00239-007-9022-z

    Article  CAS  PubMed  Google Scholar 

  66. Argos P, Rao JK, Hargrave PA (1982) Structural prediction of membrane-bound proteins. Eur J Biochem 128(2–3):565–575

    CAS  PubMed  Google Scholar 

  67. Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179(1):125–142

    Article  CAS  PubMed  Google Scholar 

  68. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132

    Article  CAS  PubMed  Google Scholar 

  69. Moller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics (Oxford, England) 17(7):646–653

    Article  CAS  Google Scholar 

  70. Lewin TM, Wang P, Coleman RA (1999) Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry 38(18):5764–5771. doi:10.1021/bi982805d

    Article  CAS  PubMed  Google Scholar 

  71. Wendel AA LT, Coleman RA (2010) NIH public access 1791: pp 380–386

    Google Scholar 

  72. Zharkikh A, Li WH (1992) Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences: II. Four taxa without a molecular clock. J Mol Evol 35(4):356–366

    Article  CAS  PubMed  Google Scholar 

  73. Kall L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338(5):1027–1036. doi:10.1016/j.jmb.2004.03.016

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María V. Beligni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bagnato, C., Have, A.T., Prados, M.B., Beligni, M.V. (2017). Computational Functional Analysis of Lipid Metabolic Enzymes. In: Bhattacharya, S. (eds) Lipidomics. Methods in Molecular Biology, vol 1609. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6996-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6996-8_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6995-1

  • Online ISBN: 978-1-4939-6996-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics