Skip to main content

Using Laser Capture Microdissection to Isolate Cortical Laminae in Nonhuman Primate Brain

  • Protocol
  • First Online:
Molecular Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1606))

Abstract

Laser capture microdissection (LCM) is a technique that allows procurement of an enriched cell population from a heterogeneous tissue sample under direct microscopic visualization. Fundamentally, laser capture microdissection consists of three main steps: (1) visualizing the desired cell population by microscopy, (2) melting a thermolabile polymer onto the desired cell populations using infrared laser energy to form a polymer-cell composite (capture method) or photovolatizing a region of tissue using ultraviolet laser energy (cutting method), and (3) removing the desired cell population from the heterogeneous tissue. In this chapter, we discuss the infrared capture method only. LCM technology is compatible with a wide range of downstream applications such as mass spectrometry, DNA genotyping and RNA transcript profiling, cDNA library generation, proteomics discovery, and signal pathway mapping. This chapter profiles the ArcturusXTâ„¢ laser capture microdissection instrument, using isolation of specific cortical lamina from nonhuman primate brain regions, and sample preparation methods for downstream proteomic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mueller C, deCarvalho AC, Mikkelsen T, Lehman NL, Calvert V, Espina V, Liotta LA, Petricoin EF 3rd (2014) Glioblastoma cell enrichment is critical for analysis of phosphorylated drug targets and proteomic-genomic correlations. Cancer Res 74(3):818–828. doi:10.1158/0008-5472.CAN-13-2172

    Article  CAS  PubMed  Google Scholar 

  2. Shipp S (2007) Structure and function of the cerebral cortex. Curr Biol 17(12):R443–R449. doi:10.1016/j.cub.2007.03.044

    Article  CAS  PubMed  Google Scholar 

  3. Gusev PA, Gubin AN (2010) Arc/Arg3.1 mRNA global expression patterns elicited by memory recall in cerebral cortex differ for remote versus recent spatial memories. Front Integr Neurosci 4:15. doi:10.3389/fnint.2010.00015

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kok P, Bains LJ, van Mourik T, Norris DG, de Lange FP (2016) Selective activation of the deep layers of the human primary visual cortex by top-down feedback. Curr Biol 26(3):371–376. doi:10.1016/j.cub.2015.12.038

    Article  CAS  PubMed  Google Scholar 

  5. Maass A, Schutze H, Speck O, Yonelinas A, Tempelmann C, Heinze HJ, Berron D, Cardenas-Blanco A, Brodersen KH, Stephan KE, Duzel E (2014) Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding. Nat Commun 5:5547. doi:10.1038/ncomms6547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maier A, Adams GK, Aura C, Leopold DA (2010) Distinct superficial and deep laminar domains of activity in the visual cortex during rest and stimulation. Front Syst Neurosci 4. doi:10.3389/fnsys.2010.00031

  7. Schroeder CE, Foxe JJ (2002) The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. Brain Res Cogn Brain Res 14(1):187–198

    Article  PubMed  Google Scholar 

  8. Takeda M, Koyano KW, Hirabayashi T, Adachi Y, Miyashita Y (2015) Top-down regulation of laminar circuit via inter-area signal for successful object memory recall in monkey temporal cortex. Neuron 86(3):840–852. doi:10.1016/j.neuron.2015.03.047

    Article  CAS  PubMed  Google Scholar 

  9. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274(5289):998–1001

    Article  CAS  PubMed  Google Scholar 

  10. Simone NL, Remaley AT, Charboneau L, Petricoin EF 3rd, Glickman JW, Emmert-Buck MR, Fleisher TA, Liotta LA (2000) Sensitive immunoassay of tissue cell proteins procured by laser capture microdissection. Am J Pathol 156(2):445–452. doi:10.1016/S0002-9440(10)64749-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boone DR, Sell SL, Hellmich HL (2013) Laser capture microdissection of enriched populations of neurons or single neurons for gene expression analysis after traumatic brain injury. J Vis Exp 74. doi:10.3791/50308

  12. Drummond ES, Nayak S, Ueberheide B, Wisniewski T (2015) Proteomic analysis of neurons microdissected from formalin-fixed, paraffin-embedded Alzheimer’s disease brain tissue. Sci Rep 5:15456. doi:10.1038/srep15456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Molina M, Steinbach S, Park YM, Yun SY, Di Lorenzo Alho AT, Heinsen H, Grinberg LT, Marcus K, Leite RE, May C (2015) Enrichment of single neurons and defined brain regions from human brain tissue samples for subsequent proteome analysis. J Neural Transm 122(7):993–1005. doi:10.1007/s00702-015-1414-4

    Article  CAS  PubMed  Google Scholar 

  14. Pietersen CY, Lim MP, Macey L, Woo TU, Sonntag KC (2011) Neuronal type-specific gene expression profiling and laser-capture microdissection. Methods Mol Biol 755:327–343. doi:10.1007/978-1-61779-163-5_28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kolble K (2000) The LEICA microdissection system: design and applications. J Mol Med 78(7):B24–B25

    CAS  PubMed  Google Scholar 

  16. Gallagher RI, Blakely SR, Liotta LA, Espina V (2012) Laser capture microdissection: Arcturus(XT) infrared capture and UV cutting methods. Methods Mol Biol 823:157–178. doi:10.1007/978-1-60327-216-2_11

    Article  CAS  PubMed  Google Scholar 

  17. Mueller C, Edmiston KH, Carpenter C, Gaffney E, Ryan C, Ward R, White S, Memeo L, Colarossi C, Petricoin EF 3rd, Liotta LA, Espina V (2011) One-step preservation of phosphoproteins and tissue morphology at room temperature for diagnostic and research specimens. PLoS One 6(8):e23780. doi:10.1371/journal.pone.0023780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Botling J, Edlund K, Segersten U, Tahmasebpoor S, Engstrom M, Sundstrom M, Malmstrom PU, Micke P (2009) Impact of thawing on RNA integrity and gene expression analysis in fresh frozen tissue. Diagn Mol Pathol 18(1):44–52. doi:10.1097/PDM.0b013e3181857e92

    Article  CAS  PubMed  Google Scholar 

  19. Espina V, Edmiston KH, Heiby M, Pierobon M, Sciro M, Merritt B, Banks S, Deng J, VanMeter AJ, Geho DH, Pastore L, Sennesh J, Petricoin EF 3rd, Liotta LA (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7(10):1998–2018. doi:10.1074/mcp.M700596-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lim MD, Dickherber A, Compton CC (2011) Before you analyze a human specimen, think quality, variability, and bias. Anal Chem 83(1):8–13. doi:10.1021/ac1018974

    Article  CAS  PubMed  Google Scholar 

  21. Micke P, Ohshima M, Tahmasebpoor S, Ren ZP, Ostman A, Ponten F, Botling J (2006) Biobanking of fresh frozen tissue: RNA is stable in nonfixed surgical specimens. Lab Invest 86(2):202–211. doi:10.1038/labinvest.3700372

    Article  CAS  PubMed  Google Scholar 

  22. Xiang CC, Mezey E, Chen M, Key S, Ma L, Brownstein MJ (2004) Using DSP, a reversible cross-linker, to fix tissue sections for immunostaining, microdissection and expression profiling. Nucleic Acids Res 32(22):e185. doi:10.1093/nar/gnh185

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang H, Owens JD, Shih JH, Li MC, Bonner RF, Mushinski JF (2006) Histological staining methods preparatory to laser capture microdissection significantly affect the integrity of the cellular RNA. BMC Genomics 7:97. doi:10.1186/1471-2164-7-97

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mouledous L, Hunt S, Harcourt R, Harry J, Williams KL, Gutstein HB (2003) Navigated laser capture microdissection as an alternative to direct histological staining for proteomic analysis of brain samples. Proteomics 3(5):610–615. doi:10.1002/pmic.200300398

    Article  CAS  PubMed  Google Scholar 

  25. Wong MH, Saam JR, Stappenbeck TS, Rexer CH, Gordon JI (2000) Genetic mosaic analysis based on Cre recombinase and navigated laser capture microdissection. Proc Natl Acad Sci U S A 97(23):12601–12606. doi:10.1073/pnas.230237997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buckanovich RJ, Sasaroli D, O’Brien-Jenkins A, Botbyl J, Conejo-Garcia JR, Benencia F, Liotta LA, Gimotty PA, Coukos G (2006) Use of immuno-LCM to identify the in situ expression profile of cellular constituents of the tumor microenvironment. Cancer Biol Ther 5(6):635–642

    Article  CAS  PubMed  Google Scholar 

  27. Demarest TG, Murugesan N, Shrestha B, Pachter JS (2012) Rapid expression profiling of brain microvascular endothelial cells by immuno-laser capture microdissection coupled to TaqMan((R)) low density array. J Neurosci Methods 206(2):200–204. doi:10.1016/j.jneumeth.2012.02.023

    Article  PubMed  PubMed Central  Google Scholar 

  28. Murakami H, Liotta L, Star RA (2000) IF-LCM: laser capture microdissection of immunofluorescently defined cells for mRNA analysis rapid communication. Kidney Int 58(3):1346–1353. doi:10.1046/j.1523-1755.2000.00295.x

    Article  CAS  PubMed  Google Scholar 

  29. Waller R, Woodroofe MN, Francese S, Heath PR, Wharton SB, Ince PG, Sharrack B, Simpson JE (2012) Isolation of enriched glial populations from post-mortem human CNS material by immuno-laser capture microdissection. J Neurosci Methods 208(2):108–113. doi:10.1016/j.jneumeth.2012.04.014

    Article  CAS  PubMed  Google Scholar 

  30. Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, Geho DH, Petricoin EF 3rd, Liotta LA (2006) Laser-capture microdissection. Nat Protoc 1(2):586–603. doi:10.1038/nprot.2006.85

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki WA, Amaral DG (1994) Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350(4):497–533. doi:10.1002/cne.903500402

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian A. Corgiat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Corgiat, B.A., Mueller, C. (2017). Using Laser Capture Microdissection to Isolate Cortical Laminae in Nonhuman Primate Brain. In: Espina, V. (eds) Molecular Profiling. Methods in Molecular Biology, vol 1606. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6990-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6990-6_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6989-0

  • Online ISBN: 978-1-4939-6990-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics