Skip to main content

Antibody Validation by Western Blotting

  • Protocol
  • First Online:
Molecular Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1606))

Abstract

Validation of antibodies is an integral part of translational research, particularly for biomarker discovery. Assaying the specificity of the reagent (antibody) and confirming the identity of the protein biomarker is of critical importance prior to implementing any biomarker in clinical studies, and the lack of such quality control tests may result in unexpected and/or misleading results.

Antibody validation is the procedure in which a single antibody is thoroughly assayed for sensitivity and specificity. Although a plethora of commercial antibodies exist, antibody specificity must be extensively demonstrated using diverse complex biological samples, rather than purified recombinant proteins, prior to use in clinical translational research. In the simplest iteration, antibody specificity is determined by the presence of a single band in a complex biological sample, at the expected molecular weight, on a Western blot.

To date, numerous Western blotting procedures are available, based on either manual or automated systems and spanning the spectrum of single blots to multiplex blots. X-ray film is still employed in many research laboratories, but digital imaging has become a gold standard in immunoblotting. The basic principles of Western blotting are (a) separation of protein mixtures by gel electrophoresis, (b) transfer of the proteins to a blot, (c) probing the blot for a protein or proteins of interest, and (d) subsequent detection of the protein by chemiluminescent, fluorescent, or colorimetric methods. This chapter focuses on the chemiluminescent detection of proteins using a manual Western blotting system and a vacuum-enhanced detection system (SNAP i.d.™, Millipore).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elliott S, Busse L, Bass MB, Lu H, Sarosi I, Sinclair AM, Spahr C, Um M, Van G, Begley CG (2006) Anti-Epo receptor antibodies do not predict Epo receptor expression. Blood 107(5):1892–1895

    Article  CAS  PubMed  Google Scholar 

  2. Elliott S, Busse L, McCaffery I, Rossi J, Sinclair A, Spahr C, Swift S, Begley CG (2010) Identification of a sensitive anti-erythropoietin receptor monoclonal antibody allows detection of low levels of EpoR in cells. J Immunol Methods 352(1–2):126–139

    Article  CAS  PubMed  Google Scholar 

  3. Baker M (2015) Antibody anarchy: a call to order. Nature 527(7579):545–551. doi:10.1038/527545a

    Article  CAS  PubMed  Google Scholar 

  4. Baker M (2015) Reproducibility crisis: blame it on the antibodies. Nature 521(7552):274–276. doi:10.1038/521274a

    Article  CAS  PubMed  Google Scholar 

  5. Bordeaux J, Welsh A, Agarwal S, Killiam E, Baquero M, Hanna J, Anagnostou V, Rimm D (2010) Antibody validation. Biotechniques 48(3):197–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Knottnerus JA, van Weel C, Muris JW (2002) Evaluation of diagnostic procedures. BMJ 324(7335):477–480

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pozner-Moulis S, Cregger M, Camp RL, Rimm DL (2007) Antibody validation by quantitative analysis of protein expression using expression of Met in breast cancer as a model. Lab Invest 87(3):251–260. doi:10.1038/labinvest.3700515

    Article  CAS  PubMed  Google Scholar 

  8. Skliris GP, Rowan BG, Al-Dhaheri M, Williams C, Troup S, Begic S, Parisien M, Watson PH, Murphy LC (2009) Immunohistochemical validation of multiple phospho-specific epitopes for estrogen receptor alpha (ERalpha) in tissue microarrays of ERalpha positive human breast carcinomas. Breast Cancer Res Treat 118(3):443–453

    Article  CAS  PubMed  Google Scholar 

  9. Almogren A, Senior BW, Kerr MA (2007) A comparison of the binding of secretory component to immunoglobulin A (IgA) in human colostral S-IgA1 and S-IgA2. Immunology 120(2):273–280. doi:10.1111/j.1365-2567.2006.02498.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dews IC, Mackenzie KR (2007) Transmembrane domains of the syndecan family of growth factor coreceptors display a hierarchy of homotypic and heterotypic interactions. Proc Natl Acad Sci U S A 104(52):20782–20787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gibert B, Hadchity E, Czekalla A, Aloy MT, Colas P, Rodriguez-Lafrasse C, Arrigo AP, Diaz-Latoud C (2011) Inhibition of heat shock protein 27 (HspB1) tumorigenic functions by peptide aptamers. Oncogene 30(34):3672–3681. doi:10.1038/onc.2011.73

    Article  CAS  PubMed  Google Scholar 

  12. VanMeter AJ, Rodriguez AS, Bowman ED, Jen J, Harris CC, Deng J, Calvert VS, Silvestri A, Fredolini C, Chandhoke V, Petricoin EF 3rd, Liotta LA, Espina V (2008) Laser capture microdissection and protein microarray analysis of human non-small cell lung cancer: differential epidermal growth factor receptor (EGPR) phosphorylation events associated with mutated EGFR compared with wild type. Mol Cell Proteomics 7(10):1902–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saper CB, Sawchenko PE (2003) Magic peptides, magic antibodies: guidelines for appropriate controls for immunohistochemistry. J Comp Neurol 465(2):161–163. doi:10.1002/cne.10858

    Article  PubMed  Google Scholar 

  14. Bradbury A, Pluckthun A (2015) Reproducibility: standardize antibodies used in research. Nature 518(7537):27–29. doi:10.1038/518027a

    Article  CAS  PubMed  Google Scholar 

  15. Janes KA (2015) An analysis of critical factors for quantitative immunoblotting. Sci Signal 8(371):rs2. doi:10.1126/scisignal.2005966

    Article  PubMed  PubMed Central  Google Scholar 

  16. Landry M, Gomes AV (2016) Antibodies: half of samples fail protein-blot tests. Nature 529(7584):25. doi:10.1038/529025c

    Article  CAS  PubMed  Google Scholar 

  17. Gilda JE, Ghosh R, Cheah JX, West TM, Bodine SC, Gomes AV (2015) Western blotting inaccuracies with unverified antibodies: need for a Western Blotting Minimal Reporting Standard (WBMRS). PLoS One 10(8):e0135392. doi:10.1371/journal.pone.0135392

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hsi ED (2001) A practical approach for evaluating new antibodies in the clinical immunohistochemistry laboratory. Arch Pathol Lab Med 125(2):289–294

    CAS  PubMed  Google Scholar 

  19. Bjorling E, Uhlen M (2008) Antibodypedia, a portal for sharing antibody and antigen validation data. Mol Cell Proteomics 7(10):2028–2037

    Article  PubMed  Google Scholar 

  20. Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate—polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112(2):195–203

    Article  CAS  PubMed  Google Scholar 

  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  22. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76(9):4350–4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Towbin H, Staehelin T, Gordon J (1989) Immunoblotting in the clinical laboratory. J Clin Chem Clin Biochem 27(8):495–501

    CAS  PubMed  Google Scholar 

  24. Bronstein I, Voyta JC, Murphy OJ, Bresnick L, Kricka LJ (1992) Improved chemiluminescent western blotting procedure. Biotechniques 12(5):748–753

    CAS  PubMed  Google Scholar 

  25. Whitehead TP, Kricka LJ, Carter TJ, Thorpe GH (1979) Analytical luminescence: its potential in the clinical laboratory. Clin Chem 25(9):1531–1546

    CAS  PubMed  Google Scholar 

  26. Silva JM, McMahon M (2014) The fastest Western in town: a contemporary twist on the classic Western blot analysis. J Vis Exp 84:e51149. doi:10.3791/51149

    Google Scholar 

  27. Bunn L, Gray J (2011) Western blot analysis of IR fluorescently labelled proteins using the G:BOX Imaging System and the Odyssey Infrared Imaging System. Protocol Exchange. doi:10.1038/protex.2011.274

    Google Scholar 

  28. Mathews ST, Plaisance EP, Kim T (2009) Imaging systems for westerns: chemiluminescence vs. infrared detection. Methods Mol Biol 536:499–513. doi:10.1007/978-1-59745-542-8_51

    Article  CAS  PubMed  Google Scholar 

  29. Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, Geho DH, Petricoin EF 3rd, Liotta LA (2006) Laser-capture microdissection. Nat Protoc 1(2):586–603

    Article  CAS  PubMed  Google Scholar 

  30. Guesdon JL, Ternynck T, Avrameas S (1979) The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem 27(8):1131–1139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by George Mason University and the Istituto Superiore di Sanità, Rome, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Signore Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Signore, M., Manganelli, V., Hodge, A. (2017). Antibody Validation by Western Blotting. In: Espina, V. (eds) Molecular Profiling. Methods in Molecular Biology, vol 1606. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6990-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6990-6_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6989-0

  • Online ISBN: 978-1-4939-6990-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics