Skip to main content

Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells

  • Protocol
  • First Online:
Heterologous Protein Production in CHO Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1603))

Abstract

The reversible phosphorylation of proteins on serine, threonine, and tyrosine residues is one of the most important post-translational modifications that regulates many biological processes. The phosphoproteome has not been studied in any great detail in recombinant Chinese hamster ovary (CHO) cells to date despite phosphorylation playing a crucial role in regulating many molecular and cellular processes relevant to bioprocess phenotypes including, for example, transcription, translation, growth, apoptosis, and signal transduction. In this chapter, we provide a protocol for the phosphoproteomic analysis of Chinese hamster ovary cells using phosphopeptide enrichment with metal oxide affinity chromatography (MOAC) and immobilized metal affinity chromatography (IMAC) techniques, followed by site-specific identification of phosphorylated residues using LC-MS (MS2 and MS3) strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walsh G (2014) Biopharmaceutical benchmarks. Nat Biotechnol 32(10):992–1000

    Article  CAS  PubMed  Google Scholar 

  2. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398

    Article  CAS  PubMed  Google Scholar 

  3. Altamirano C, Paredes C, Cairó JJ, Gòdia F (2000) Improvement of CHO cell culture medium formulation: simultaneous substitution of glucose and glutamine. Biotechnol Prog 16:69–75

    Article  CAS  PubMed  Google Scholar 

  4. Prentice HL, Ehrenfels BN, Sisk WP (2007) Improving performance of mammalian cells in fed-batch processes through “bioreactor evolution”. Biotechnol Prog 23:458–464

    Article  CAS  PubMed  Google Scholar 

  5. Kildegaard HF, Baycin-Hizal D, Lewis NE, Betenbaugh MJ (2013) The emerging CHO systems biology era: harnessing the 'omics revolution for biotechnology. Curr Opin Biotechnol 24(6):1102–1107

    Article  PubMed  Google Scholar 

  6. Gutierrez JM, Lewis NE (2015) Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling. Biotechnol J 10(7):939–949

    Article  CAS  PubMed  Google Scholar 

  7. Lewis N, Liu X, Li Y, Nagarajan H, Yerganian G, O'Brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C, Xie M, Chen W, Li N, Baycin-Hizal D, Latif H, Forster J, Betenbaugh MJ, Famili I, Xu X, Wang J, Palsson BO (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 31(8):759–765

    Article  CAS  PubMed  Google Scholar 

  8. Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, Andersen MR, Neff N, Passarelli B, Koh W, Fan HC, Wang J, Gui Y, Lee KH, Betenbaugh MJ, Quake SR, Famil I, Palsson BO, Wang J (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29(8):735–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brinkrolf K, Rupp O, Laux H, Kollin F, Ernst W, Linke B, Kofler R, Romand S, Hesse F, Budach WE, Galosy S, Muller D, Noll T, Wienberg J, Jostock T, Leonard M, Grillari J, Tauch A, Goesmann A, Helk B, Mott JE, Puhler A, Borth N (2013) Chinese hamster genome sequenced from sorted chromosomes. Nat Biotechnol 31(8):694–695

    Article  CAS  PubMed  Google Scholar 

  10. Kaas CS, Kristensen C, Betenbaugh MJ, Andersen MR (2015) Sequencing the CHO DXB11 genome reveals regional variations in genomic stability and haploidy. BMC Genomics 16:160

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baycin-Hizal D, Tabb DL, Chaerkady R, Chen L, Lewis NE, Nagarajan H, Sarkaria V, Kumar A, Wolozny D, Colao J, Jacobson E, Tian Y, O'Meally RN, Krag SS, Cole RN, Palsson BO, Zhang H, Betenbaugh M (2012) Proteomic analysis of Chinese hamster ovary cells. J Proteome Res 11(11):5265–5276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo Y, Xiao P, Lei S, Deng F, Xiao GG, Liu Y, Chen X, Li L, Wu S, Chen Y, Jiang H, Tan L, Xie J, Zhu X, Liang S, Deng H (2008) How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim Biophys Sin 40(5):426–436

    Article  CAS  PubMed  Google Scholar 

  13. Farrell A, McLoughlin N, Milne JJ, Marison IW, Bones J (2014) Application of multi-omics techniques for bioprocess design and optimization in Chinese hamster ovary cells. J Proteome Res 13(7):3144–3159

    Article  CAS  PubMed  Google Scholar 

  14. Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11(6):427–439

    Article  CAS  PubMed  Google Scholar 

  15. Cohen P (2001) The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur J Biochem 268(19):5001–5010

    Article  CAS  PubMed  Google Scholar 

  16. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3

    Article  PubMed  Google Scholar 

  17. Dephoure N, Gould KL, Gygi SP, Kellogg DR (2013) Mapping and analysis of phosphorylation sites: a quick guide for cell biologists. Mol Biol Cell 24(5):535–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E (2014) PI3K/AKT signaling pathway and cancer: an updated review. Ann Med 5:1–12

    Google Scholar 

  19. Hopkins BD, Hodakoski C, Barrows D, Mense SM, Parsons RE (2014) PTEN function: the long and the short of it. Trends Biochem Sci 39(4):183–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Farrell AS, Allen-Petersen B, Daniel CJ, Wang X, Wang Z, Rodriguez S, Impey S, Oddo J, Vitek MP, Lopez C, Christensen DJ, Sheppard B, Sears RC (2014) Targeting inhibitors of the tumor suppressor PP2A for the treatment of pancreatic cancer. Mol Cancer Res 12(6):924–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Whitmarsh AJ, Davis RJ (2000) Regulation of transcription factor function by phosphorylation. Cell Mol Life Sci 57(8–9):1172–1183

    Article  CAS  PubMed  Google Scholar 

  22. Simon GM, Cravatt BF (2008) Challenges for the 'chemical-systems' biologist. Nat Chem Biol 4(11):639–642

    Article  CAS  PubMed  Google Scholar 

  23. Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW, Smith RD (2012) Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev 41(10):3912–3928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7(4):661–671

    Article  CAS  PubMed  Google Scholar 

  25. Taus T, Köcher T, Pichler P, Paschke C, Schmidt A, Henrich C, Mechtler K (2011) Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 10(12):5354–5362

    Article  CAS  PubMed  Google Scholar 

  26. Meleady P, Hoffrogge R, Henry M, Rupp O, Bort JH, Clarke C, Brinkrolf K, Kelly S, Müller B, Doolan P, Hackl M, Beckmann TF, Noll T, Grillari J, Barron N, Pühler A, Clynes M, Borth N (2012) Utilization and evaluation of CHO-specific sequence databases for mass spectrometry based proteomics. Biotechnol Bioeng 109(6):1386–1394

    Article  CAS  PubMed  Google Scholar 

  27. Liu S, Zhang C, Campbell JL, Zhang H, Yeung KK, Han VK, Lajoie GA (2005) Formation of phosphopeptide-metal ion complexes in liquid chromatography/electrospray mass spectrometry and their influence on phosphopeptide detection. Rapid Commun Mass Spectrom 19(19):2747–2756

    Article  CAS  PubMed  Google Scholar 

  28. Spivak M, Weston J, Bottou L, Käll L, Noble WS (2009) Improvements to the percolator algorithm for peptide identification from shotgun proteomics data sets. J Proteome Res 8(7):3737–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alpert AJ, Hudecz O, Mechtler K (2015) Anion-exchange chromatography of phosphopeptides: weak anion exchange versus strong anion exchange and anion-exchange chromatography versus electrostatic repulsion-hydrophilic interaction chromatography. Anal Chem 87(9):4704–4711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roitinger E, Hofer M, Köcher T, Pichler P, Novatchkova M, Yang J, Schlögelhofer P, Mechtler K (2015) Quantitative phosphoproteomics of the ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia-mutated and rad3-related (ATR) dependent DNA damage response in Arabidopsis thaliana. Mol Cell Proteomics 14(3):556–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from Science Foundation Ireland (grant ref. 13/1A/1841) and the Horizon 2020 Marie Curie ITN programme – eCHO systems (grant ref.: 642663).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Henry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Henry, M., Coleman, O., Prashant, Clynes, M., Meleady, P. (2017). Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells. In: Meleady, P. (eds) Heterologous Protein Production in CHO Cells. Methods in Molecular Biology, vol 1603. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6972-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6972-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6971-5

  • Online ISBN: 978-1-4939-6972-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics