Skip to main content

A Microplate-Based Bioluminescence Assay of Mitochondrial Calcium Uptake

  • Protocol
  • First Online:
Mitochondria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1567))

Abstract

Mitochondrial Ca2+ homeostasis is crucial for regulating vital functions such as respiration or apoptosis. Targeted aequorins are excellent probes to measure subcellular Ca2+. Ca2+ concentration in mitochondria ([Ca2+]M) is low at rest (about 10−7 M) and can increase to the micromolar or even approach the millimolar range, upon cell activation. Here we describe a new quantitative luminescent protocol to directly measure mitochondrial Ca2+ uptake, optimized for high throughput. The sensitivity of the method allows detection of changes in either the capacity or the affinity of mitochondrial Ca2+ transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13(9):566–578. http://www.nature.com/nrm/journal/v13/n9/suppinfo/nrm3412_S1.html

  2. Baughman JM (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crompton M, Kunzi M, Carafoli E (1977) The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier. Eur J Biochem 79:549–558

    Article  CAS  PubMed  Google Scholar 

  5. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786

    CAS  PubMed  Google Scholar 

  6. Montero M (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nature Cell Biol 2:57–61

    Article  CAS  PubMed  Google Scholar 

  7. Rizzuto R, Simpson AW, Brini M, Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358:325–327

    Article  CAS  PubMed  Google Scholar 

  8. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  PubMed  Google Scholar 

  9. Manjarres IM, Chamero P, Domingo B, Molina F, Llopis J, Alonso MT, Garcia-Sancho J (2008) Red and green aequorins for simultaneous monitoring of Ca2+ signals from two different organelles. Pflugers Arch 455(5):961–970. doi:10.1007/s00424-007-0349-5

    Article  CAS  PubMed  Google Scholar 

  10. Baubet V, Le Mouellic H, Campbell AK, Lucas-Meunier E, Fossier P, Brulet P (2000) Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci U S A 97(13):7260–7265. doi: 97/13/7260 [pii]

    Google Scholar 

  11. Allen DG, Blinks JR, Prendergast FG (1977) Aequorin luminescence: relation of light emission to calcium concentration—a calcium-independent component. Science 195(4282):996–998

    Article  CAS  PubMed  Google Scholar 

  12. Alonso MT, Villalobos C, Chamero P, Alvarez J, Garcia-Sancho J (2006) Calcium microdomains in mitochondria and nucleus. Cell Calcium 40(5-6):513–525. doi:10.1016/j.ceca.2006.08.013

    Article  CAS  PubMed  Google Scholar 

  13. Patton C, Thompson S, Epel D (2004) Some precautions in using chelators to buffer metals in biological solutions. Cell Calcium 35(5):427–431. doi:10.1016/j.ceca.2003.10.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to present and past members of the laboratory. We specially thank Dr. Perocchi for her help with the assay and comments on the manuscript. This work was supported by a grant from the Spanish Ministerio de Economía y Competitividad (BFU2014-534698P) and the Instituto de Salud Carlos III (RD16/0011/0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Teresa Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Alonso, M.T., Navas-Navarro, P., García-Sancho, J. (2017). A Microplate-Based Bioluminescence Assay of Mitochondrial Calcium Uptake. In: Mokranjac, D., Perocchi, F. (eds) Mitochondria. Methods in Molecular Biology, vol 1567. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6824-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6824-4_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6822-0

  • Online ISBN: 978-1-4939-6824-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics