Skip to main content

Impact of Nonsynonymous Single-Nucleotide Variations on Post-Translational Modification Sites in Human Proteins

  • Protocol
  • First Online:
Protein Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1558))

Abstract

Post-translational modifications (PTMs) are covalent modifications that proteins might undergo following or sometimes during the process of translation. Together with gene diversity, PTMs contribute to the overall variety of possible protein function for a given organism. Single-nucleotide polymorphisms (SNPs) are the most common form of variations found in the human genome, and have been found to be associated with diseases like Alzheimer’s disease (AD) and Parkinson’s disease (PD), among many others. Studies have also shown that non-synonymous single-nucleotide variation (nsSNV) at the PTM site, which alters the corresponding encoded amino acid in the translated protein sequence, can lead to abnormal activity of a protein and can contribute to a disease phenotype. Significant advances in next-generation sequencing (NGS) technologies and high-throughput proteomics have resulted in the generation of a huge amount of data for both SNPs and PTMs. However, these data are unsystematically distributed across a number of diverse databases. Thus, there is a need for efforts toward data standardization and validation of bioinformatics algorithms that can fully leverage SNP and PTM information for biomedical research. In this book chapter, we will present some of the commonly used databases for both SNVs and PTMs and describe a broad approach that can be applied to many scenarios for studying the impact of nsSNVs on PTM sites of human proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Crick F (1970) Central dogma of molecular biology. Nature 227(5258):561–563. doi:10.1038/227561a0

    Article  CAS  PubMed  Google Scholar 

  2. Koonin EV (2012) Does the central dogma still stand? Biol Direct 7:27. doi:10.1186/1745-6150-7-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chesebro B (2003) Introduction to the transmissible spongiform encephalopathies or prion diseases. Br Med Bull 66:1–20

    Article  CAS  PubMed  Google Scholar 

  4. Chien P, Weissman JS, DePace AH (2004) Emerging principles of conformation-based prion inheritance. Annu Rev Biochem 73:617–656. doi:10.1146/annurev.biochem.72.121801.161837

    Article  CAS  PubMed  Google Scholar 

  5. Munch C, Bertolotti A (2012) Propagation of the prion phenomenon: beyond the seeding principle. J Mol Biol 421(4–5):491–498. doi:10.1016/j.jmb.2011.12.061

    Article  CAS  PubMed  Google Scholar 

  6. Sachidanandam R, Weissman D, SC S, JM K, LD S, Marth G, Sherry S, JC M, BJ M, DL W, SE H, CG C, PC C, CM R, Ning Z, Rogers J, DR B, PY K, ER M, RT Y, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, RH W, JD MP, Gilman B, Schaffner S, WJ VE, Reich D, Higgins J, MJ D, Blumenstiel B, Baldwin J, Stange-Thomann N, MC Z, Linton L, ES L, Altshuler D, International SNPMWG (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409(6822):928–933. doi:10.1038/35057149

    Article  CAS  PubMed  Google Scholar 

  7. Carlson CS, Eberle MA, Rieder MJ, Smith JD, Kruglyak L, Nickerson DA (2003) Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. Nat Genet 33(4):518–521. doi:10.1038/ng1128

    Article  CAS  PubMed  Google Scholar 

  8. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Genomes Project C, GR A, Altshuler D, Auton A, LD B, RM D, RA G, ME H, GA MV (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073. doi:10.1038/nature09534

    Article  CAS  Google Scholar 

  10. Lehne B, Lewis CM, Schlitt T (2011) From SNPs to genes: disease association at the gene level. PloS One 6(6):e20133. doi:10.1371/journal.pone.0020133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, Kwiatkowski DP, McCarthy MI, Ouwehand WH, Samani NJ, Todd JA, Donnelly P, Barrett JC, Davison D, Easton D, Evans DM, Leung HT, Marchini JL, Morris AP, Spencer CC, Tobin MD, Attwood AP, Boorman JP, Cant B, Everson U, Hussey JM, Jolley JD, Knight AS, Koch K, Meech E, Nutland S, Prowse CV, Stevens HE, Taylor NC, Walters GR, Walker NM, Watkins NA, Winzer T, Jones RW, McArdle WL, Ring SM, Strachan DP, Pembrey M, Breen G, St Clair D, Caesar S, Gordon-Smith K, Jones L, Fraser C, Green EK, Grozeva D, Hamshere ML, Holmans PA, Jones IR, Kirov G, Moskivina V, Nikolov I, O'Donovan MC, Owen MJ, Collier DA, Elkin A, Farmer A, Williamson R, McGuffin P, Young AH, Ferrier IN, Ball SG, Balmforth AJ, Barrett JH, Bishop TD, Iles MM, Maqbool A, Yuldasheva N, Hall AS, Braund PS, Dixon RJ, Mangino M, Stevens S, Thompson JR, Bredin F, Tremelling M, Parkes M, Drummond H, Lees CW, Nimmo ER, Satsangi J, Fisher SA, Forbes A, Lewis CM, Onnie CM, Prescott NJ, Sanderson J, Matthew CG, Barbour J, Mohiuddin MK, Todhunter CE, Mansfield JC, Ahmad T, Cummings FR, Jewell DP, Webster J, Brown MJ, Lathrop MG, Connell J, Dominiczak A, Marcano CA, Burke B, Dobson R, Gungadoo J, Lee KL, Munroe PB, Newhouse SJ, Onipinla A, Wallace C, Xue M, Caulfield M, Farrall M, Barton A, Bruce IN, Donovan H, Eyre S, Gilbert PD, Hilder SL, Hinks AM, John SL, Potter C, Silman AJ, Symmons DP, Thomson W, Worthington J, Dunger DB, Widmer B, Frayling TM, Freathy RM, Lango H, Perry JR, Shields BM, Weedon MN, Hattersley AT, Hitman GA, Walker M, Elliott KS, Groves CJ, Lindgren CM, Rayner NW, Timpson NJ, Zeggini E, Newport M, Sirugo G, Lyons E, Vannberg F, Hill AV, Bradbury LA, Farrar C, Pointon JJ, Wordsworth P, Brown MA, Franklyn JA, Heward JM, Simmonds MJ, Gough SC, Seal S, Stratton MR, Rahman N, Ban M, Goris A, Sawcer SJ, Compston A, Conway D, Jallow M, Rockett KA, Bumpstead SJ, Chaney A, Downes K, Ghori MJ, Gwilliam R, Hunt SE, Inouye M, Keniry A, King E, McGinnis R, Potter S, Ravindrarajah R, Whittaker P, Widden C, Withers D, Cardin NJ, Ferreira T, Pereira-Gale J, Hallgrimsdo'ttir IB, Howie BN, Su Z, Teo YY, Vukcevic D, Bentley D, Mitchell SL, Newby PR, Brand OJ, Carr-Smith J, Pearce SH, Reveille JD, Zhou X, Sims AM, Dowling A, Taylor J, Doan T, Davis JC, Savage L, Ward MM, Learch TL, Weisman MH, Brown M (2007) Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 39(11):1329–1337. doi:10.1038/ng.2007.17

    Article  CAS  PubMed  Google Scholar 

  12. Levy A, Hall L, Yeudall WA, Lightman SL (1994) p53 gene mutations in pituitary adenomas: rare events. Clin Endocrinol (Oxf) 41(6):809–814

    Article  CAS  Google Scholar 

  13. International HapMap C, Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, Peltonen L, Dermitzakis E, Bonnen PE, Altshuler DM, Gibbs RA, de Bakker PI, Deloukas P, Gabriel SB, Gwilliam R, Hunt S, Inouye M, Jia X, Palotie A, Parkin M, Whittaker P, Yu F, Chang K, Hawes A, Lewis LR, Ren Y, Wheeler D, Gibbs RA, Muzny DM, Barnes C, Darvishi K, Hurles M, Korn JM, Kristiansson K, Lee C, McCarrol SA, Nemesh J, Dermitzakis E, Keinan A, Montgomery SB, Pollack S, Price AL, Soranzo N, Bonnen PE, Gibbs RA, Gonzaga-Jauregui C, Keinan A, Price AL, Yu F, Anttila V, Brodeur W, Daly MJ, Leslie S, McVean G, Moutsianas L, Nguyen H, Schaffner SF, Zhang Q, Ghori MJ, McGinnis R, McLaren W, Pollack S, Price AL, Schaffner SF, Takeuchi F, Grossman SR, Shlyakhter I, Hostetter EB, Sabeti PC, Adebamowo CA, Foster MW, Gordon DR, Licinio J, Manca MC, Marshall PA, Matsuda I, Ngare D, Wang VO, Reddy D, Rotimi CN, Royal CD, Sharp RR, Zeng C, Brooks LD, McEwen JE (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467(7311):52–58. doi:10.1038/nature09298

    Article  CAS  Google Scholar 

  14. Eilbeck K, Lewis SE (2004) Sequence ontology annotation guide. Comp Funct Genomics 5(8):642–647. doi:10.1002/cfg.446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu Q, Guo Y, Li J, Long J, Zhang B, Shyr Y (2012) Steps to ensure accuracy in genotype and SNP calling from Illumina sequencing data. BMC Genomics 13(Suppl 8):S8. doi:10.1186/1471–2164-13-S8-S8

    Google Scholar 

  16. Varani G, McClain WH (2000) The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. EMBO Rep 1(1):18–23. doi:10.1093/embo-reports/kvd001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weatherall DJ (2004) Thalassaemia: the long road from bedside to genome. Nat Rev Genet 5(8):625–631. doi:10.1038/nrg1406

    Article  CAS  PubMed  Google Scholar 

  18. Griffiths A (2000) An introduction to genetic analysis, 7th edn. W.H. Freeman, New York

    Google Scholar 

  19. Grotenbreg G, Ploegh H (2007) Chemical biology: dressed-up proteins. Nature 446(7139):993–995. doi:10.1038/446993a

    Article  CAS  PubMed  Google Scholar 

  20. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080. doi:10.1126/science.1063127

    Article  CAS  PubMed  Google Scholar 

  21. Bode AM, Dong Z (2004) Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4(10):793–805. doi:10.1038/nrc1455

    Article  CAS  PubMed  Google Scholar 

  22. Lam PV, Goldman R, Karagiannis K, Narsule T, Simonyan V, Soika V, Mazumder R (2013) Structure-based comparative analysis and prediction of N-linked glycosylation sites in evolutionarily distant eukaryotes. Genomics Proteomics Bioinformatics 11(2):96–104. doi:10.1016/j.gpb.2012.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1. doi:10.1038/srep00090

  24. Burnett G, Kennedy EP (1954) The enzymatic phosphorylation of proteins. J Biol Chem 211(2):969–980

    CAS  PubMed  Google Scholar 

  25. Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8(7):530–541. doi:10.1038/nrm2203

    Article  CAS  PubMed  Google Scholar 

  26. Cohen P (2000) The regulation of protein function by multisite phosphorylation--a 25 year update. Trends Biochem Sci 25(12):596–601

    Article  CAS  PubMed  Google Scholar 

  27. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934. doi:10.1126/science.1075762

    Article  CAS  PubMed  Google Scholar 

  28. Manning G, Plowman GD, Hunter T, Sudarsanam S (2002) Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27(10):514–520

    Article  CAS  PubMed  Google Scholar 

  29. Ciesla J, Fraczyk T, Rode W (2011) Phosphorylation of basic amino acid residues in proteins: important but easily missed. Acta Biochim Pol 58(2):137–148

    CAS  PubMed  Google Scholar 

  30. Zisch AH, D'Alessandri L, Amrein K, Ranscht B, Winterhalter KH, Vaughan L (1995) The glypiated neuronal cell adhesion molecule contactin/F11 complexes with src-family protein tyrosine kinase Fyn. Mol Cell Neurosci 6(3):263–279. doi:10.1006/mcne.1995.1021

    Article  CAS  PubMed  Google Scholar 

  31. Wolfe BL, Trejo J (2007) Clathrin-dependent mechanisms of G protein-coupled receptor endocytosis. Traffic 8(5):462–470. doi:10.1111/j.1600-0854.2007.00551.x

    Article  CAS  PubMed  Google Scholar 

  32. Qureshi S, Galiveeti S, Bichet DG, Roth J (2014) Diabetes insipidus: celebrating a century of vasopressin therapy. Endocrinology 155(12):4605–4621. doi:10.1210/en.2014-1385

    Article  PubMed  CAS  Google Scholar 

  33. Rene P, Le Gouill C, Pogozheva ID, Lee G, Mosberg HI, Farooqi IS, Valenzano KJ, Bouvier M (2010) Pharmacological chaperones restore function to MC4R mutants responsible for severe early-onset obesity. J Pharmacol Exp Ther 335(3):520–532. doi:10.1124/jpet.110.172098

    Article  CAS  PubMed  Google Scholar 

  34. Tzekov R, Stein L, Kaushal S (2011) Protein misfolding and retinal degeneration. Cold Spring Harb Perspect Biol 3(11):a007492. doi:10.1101/cshperspect.a007492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Butcher AJ, Prihandoko R, Kong KC, McWilliams P, Edwards JM, Bottrill A, Mistry S, Tobin AB (2011) Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code. J Biol Chem 286(13):11506–11518. doi:10.1074/jbc.M110.154526

    Article  CAS  PubMed  Google Scholar 

  36. Lappano R, Maggiolini M (2011) G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 10(1):47–60. doi:10.1038/nrd3320

    Article  CAS  PubMed  Google Scholar 

  37. Marth JD, Grewal PK (2008) Mammalian glycosylation in immunity. Nat Rev Immunol 8(11):874–887. doi:10.1038/nri2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA (2001) Glycosylation and the immune system. Science 291(5512):2370–2376

    Article  CAS  PubMed  Google Scholar 

  39. Marino K, Bones J, Kattla JJ, Rudd PM (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol 6(10):713–723. doi:10.1038/nchembio.437

    Article  CAS  PubMed  Google Scholar 

  40. Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96(2):683–720

    Article  CAS  PubMed  Google Scholar 

  41. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12(4):43R–56R

    Article  CAS  PubMed  Google Scholar 

  42. Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13(7):448–462. doi:10.1038/nrm3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867. doi:10.1016/j.cell.2006.08.019

    Article  CAS  PubMed  Google Scholar 

  44. Gagneux P, Varki A (1999) Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9(8):747–755

    Article  CAS  PubMed  Google Scholar 

  45. Pompach P, Brnakova Z, Sanda M, Wu J, Edwards N, Goldman R (2013) Site-specific glycoforms of haptoglobin in liver cirrhosis and hepatocellular carcinoma. Mol Cell Proteomics 12(5):1281–1293. doi:10.1074/mcp.M112.023259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Landsteiner K (1931) Individual differences in human blood. Science 73(1894):403–409. doi:10.1126/science.73.1894.403

    Article  CAS  PubMed  Google Scholar 

  47. Shriver Z, Raguram S, Sasisekharan R (2004) Glycomics: a pathway to a class of new and improved therapeutics. Nat Rev Drug Discov 3(10):863–873. doi:10.1038/nrd1521

    Article  CAS  PubMed  Google Scholar 

  48. Miura Y, Endo T (2016) Glycomics and glycoproteomics focused on aging and age-related diseases–Glycans as a potential biomarker for physiological alterations. Biochim Biophys Acta. doi:10.1016/j.bbagen.2016.01.013

    Google Scholar 

  49. Varki A (2015) Essentials of glycobiology, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY)

    Google Scholar 

  50. Scott H, Panin VM (2014) The role of protein N-glycosylation in neural transmission. Glycobiology 24(5):407–417. doi:10.1093/glycob/cwu015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aebi M, Bernasconi R, Clerc S, Molinari M (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35(2):74–82. doi:10.1016/j.tibs.2009.10.001

    Article  CAS  PubMed  Google Scholar 

  52. Mazumder R, Morampudi KS, Motwani M, Vasudevan S, Goldman R (2012) Proteome-wide analysis of single-nucleotide variations in the N-glycosylation sequon of human genes. PloS One 7(5):e36212. doi:10.1371/journal.pone.0036212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Trombetta ES (2003) The contribution of N-glycans and their processing in the endoplasmic reticulum to glycoprotein biosynthesis. Glycobiology 13(9):77R–91R. doi:10.1093/glycob/cwg075

    Article  CAS  PubMed  Google Scholar 

  54. Ramachandran R, Noorbakhsh F, Defea K, Hollenberg MD (2012) Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov 11(1):69–86. doi:10.1038/nrd3615

    Article  CAS  PubMed  Google Scholar 

  55. Arora P, Ricks TK, Trejo J (2007) Protease-activated receptor signalling, endocytic sorting and dysregulation in cancer. J Cell Sci 120(Pt 6):921–928. doi:10.1242/jcs.03409

    Article  CAS  PubMed  Google Scholar 

  56. Zauner G, Kozak RP, Gardner RA, Fernandes DL, Deelder AM, Wuhrer M (2012) Protein O-glycosylation analysis. Biol Chem 393(8):687–708. doi:10.1515/hsz-2012-0144

    Article  CAS  PubMed  Google Scholar 

  57. Wojcikiewicz RJ (2004) Regulated ubiquitination of proteins in GPCR-initiated signaling pathways. Trends Pharmacol Sci 25(1):35–41. doi:10.1016/j.tips.2003.11.008

    Article  CAS  PubMed  Google Scholar 

  58. Alonso V, Friedman PA (2013) Minireview: ubiquitination-regulated G protein-coupled receptor signaling and trafficking. Mol Endocrinol 27(4):558–572. doi:10.1210/me.2012-1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hammond-Martel I, Yu H, Affar el B (2012) Roles of ubiquitin signaling in transcription regulation. Cell Signal 24(2):410–421. doi:10.1016/j.cellsig.2011.10.009

    Article  CAS  PubMed  Google Scholar 

  60. Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33(3):275–286. doi:10.1016/j.molcel.2009.01.014

    Article  CAS  PubMed  Google Scholar 

  61. Norskov-Lauritsen L, Brauner-Osborne H (2015) Role of post-translational modifications on structure, function and pharmacology of class C G protein-coupled receptors. Eur J Pharmacol 763(Pt B):233–240. doi:10.1016/j.ejphar.2015.05.015

    Article  PubMed  CAS  Google Scholar 

  62. Espinosa JM (2008) Histone H2B ubiquitination: the cancer connection. Genes Dev 22(20):2743–2749. doi:10.1101/gad.1732108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Van Damme P, Hole K, Pimenta-Marques A, Helsens K, Vandekerckhove J, Martinho RG, Gevaert K, Arnesen T (2011) NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation. PLoS Genet 7(7):e1002169. doi:10.1371/journal.pgen.1002169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Starheim KK, Gevaert K, Arnesen T (2012) Protein N-terminal acetyltransferases: when the start matters. Trends Biochem Sci 37(4):152–161. doi:10.1016/j.tibs.2012.02.003

    Article  CAS  PubMed  Google Scholar 

  65. Yi CH, Pan H, Seebacher J, Jang IH, Hyberts SG, Heffron GJ, Vander Heiden MG, Yang R, Li F, Locasale JW, Sharfi H, Zhai B, Rodriguez-Mias R, Luithardt H, Cantley LC, Daley GQ, Asara JM, Gygi SP, Wagner G, Liu CF, Yuan J (2011) Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell 146(4):607–620. doi:10.1016/j.cell.2011.06.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rope AF, Wang K, Evjenth R, Xing J, Johnston JJ, Swensen JJ, Johnson WE, Moore B, Huff CD, Bird LM, Carey JC, Opitz JM, Stevens CA, Jiang T, Schank C, Fain HD, Robison R, Dalley B, Chin S, South ST, Pysher TJ, Jorde LB, Hakonarson H, Lillehaug JR, Biesecker LG, Yandell M, Arnesen T, Lyon GJ (2011) Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency. Am J Hum Genet 89(1):28–43. doi:10.1016/j.ajhg.2011.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hwang CS, Shemorry A, Varshavsky A (2010) N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327(5968):973–977. doi:10.1126/science.1183147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Forte GM, Pool MR, Stirling CJ (2011) N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLoS Biol 9(5):e1001073. doi:10.1371/journal.pbio.1001073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Scott DC, Monda JK, Bennett EJ, Harper JW, Schulman BA (2011) N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science 334(6056):674–678. doi:10.1126/science.1209307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hofmann I, Munro S (2006) An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility. J Cell Sci 119(Pt 8):1494–1503. doi:10.1242/jcs.02958

    Article  CAS  PubMed  Google Scholar 

  71. Sadoul K, Boyault C, Pabion M, Khochbin S (2008) Regulation of protein turnover by acetyltransferases and deacetylases. Biochimie 90(2):306–312. doi:10.1016/j.biochi.2007.06.009

    Article  CAS  PubMed  Google Scholar 

  72. Spange S, Wagner T, Heinzel T, Kramer OH (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41(1):185–198. doi:10.1016/j.biocel.2008.08.027

    Article  CAS  PubMed  Google Scholar 

  73. Li QQ, Hao JJ, Zhang Z, Hsu I, Liu Y, Tao Z, Lewi K, Metwalli AR, Agarwal PK (2016) Histone deacetylase inhibitor-induced cell death in bladder cancer is associated with chromatin modification and modifying protein expression: A proteomic approach. Int J Oncol. doi:10.3892/ijo.2016.3478

    Google Scholar 

  74. Hamey JJ, Winter DL, Yagoub D, Overall CM, Hart-Smith G, Wilkins MR (2016) Novel N-terminal and lysine methyltransferases that target translation elongation factor 1A in yeast and human. Mol Cell Proteomics 15(1):164–176. doi:10.1074/mcp.M115.052449

    Article  CAS  PubMed  Google Scholar 

  75. Liu H, Galka M, Mori E, Liu X, Lin YF, Wei R, Pittock P, Voss C, Dhami G, Li X, Miyaji M, Lajoie G, Chen B, Li SS (2013) A method for systematic mapping of protein lysine methylation identifies functions for HP1beta in DNA damage response. Mol Cell 50(5):723–735. doi:10.1016/j.molcel.2013.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sayegh J, Webb K, Cheng D, Bedford MT, Clarke SG (2007) Regulation of protein arginine methyltransferase 8 (PRMT8) activity by its N-terminal domain. J Biol Chem 282(50):36444–36453. doi:10.1074/jbc.M704650200

    Article  CAS  PubMed  Google Scholar 

  77. Bedford MT, Richard S (2005) Arginine methylation an emerging regulator of protein function. Mol Cell 18(3):263–272. doi:10.1016/j.molcel.2005.04.003

    Article  CAS  PubMed  Google Scholar 

  78. Yang Y, Bedford MT (2013) Protein arginine methyltransferases and cancer. Nat Rev Cancer 13(1):37–50. doi:10.1038/nrc3409

    Article  CAS  PubMed  Google Scholar 

  79. Byvoet P, Shepherd GR, Hardin JM, Noland BJ (1972) The distribution and turnover of labeled methyl groups in histone fractions of cultured mammalian cells. Arch Biochem Biophys 148(2):558–567

    Article  CAS  PubMed  Google Scholar 

  80. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953. doi:10.1016/j.cell.2004.12.012

    Article  CAS  PubMed  Google Scholar 

  81. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357. doi:10.1038/nrg3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Young NL, Dimaggio PA, Garcia BA (2010) The significance, development and progress of high-throughput combinatorial histone code analysis. Cell Mol Life Sci 67(23):3983–4000. doi:10.1007/s00018-010-0475-7

    Article  CAS  PubMed  Google Scholar 

  83. Lewis PW, Muller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, Garcia BA, Muir TW, Becher OJ, Allis CD (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340(6134):857–861. doi:10.1126/science.1232245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11(10):685–696. doi:10.1038/nrg2841

    Article  CAS  PubMed  Google Scholar 

  85. Wu TJ, Shamsaddini A, Pan Y, Smith K, Crichton DJ, Simonyan V, Mazumder R (2014) A framework for organizing cancer-related variations from existing databases, publications and NGS data using a High-performance Integrated Virtual Environment (HIVE). Database (Oxford) 2014:bau022. doi:10.1093/database/bau022

    Article  Google Scholar 

  86. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H (2014) The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42(Database issue):D1001–D1006. doi:10.1093/nar/gkt1229

    Article  CAS  PubMed  Google Scholar 

  87. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, Maglott DR (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42(Database issue):D980–D985. doi:10.1093/nar/gkt1113

    Article  CAS  PubMed  Google Scholar 

  88. RA P, MP A, HH A et al (eds) (1993) GeneReviews(R). University of Washington, Seattle (WA)

    Google Scholar 

  89. Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Mazumder R, O'Donovan C, Redaschi N, Suzek B (2006) The universal protein resource (UniProt): an expanding universe of protein information. Nucleic Acids Res 34(Database issue):D187–D191

    Article  CAS  PubMed  Google Scholar 

  90. Mottaz A, David FP, Veuthey AL, Yip YL (2010) Easy retrieval of single amino-acid polymorphisms and phenotype information using SwissVar. Bioinformatics 26(6):851–852. doi:10.1093/bioinformatics/btq028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Genomes Project C, GR A, Auton A, LD B, MA DP, RM D, RE H, HM K, GT M, GA MV (2012) An integrated map of genetic variation from 1092 human genomes. Nature 491(7422):56–65. doi:10.1038/nature11632

    Article  CAS  Google Scholar 

  92. International Cancer Genome C, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR, Bhan MK, Calvo F, Eerola I, Gerhard DS, Guttmacher A, Guyer M, Hemsley FM, Jennings JL, Kerr D, Klatt P, Kolar P, Kusada J, Lane DP, Laplace F, Youyong L, Nettekoven G, Ozenberger B, Peterson J, Rao TS, Remacle J, Schafer AJ, Shibata T, Stratton MR, Vockley JG, Watanabe K, Yang H, Yuen MM, Knoppers BM, Bobrow M, Cambon-Thomsen A, Dressler LG, Dyke SO, Joly Y, Kato K, Kennedy KL, Nicolas P, Parker MJ, Rial-Sebbag E, Romeo-Casabona CM, Shaw KM, Wallace S, Wiesner GL, Zeps N, Lichter P, Biankin AV, Chabannon C, Chin L, Clement B, de Alava E, Degos F, Ferguson ML, Geary P, Hayes DN, Hudson TJ, Johns AL, Kasprzyk A, Nakagawa H, Penny R, Piris MA, Sarin R, Scarpa A, Shibata T, van de Vijver M, Futreal PA, Aburatani H, Bayes M, Botwell DD, Campbell PJ, Estivill X, Gerhard DS, Grimmond SM, Gut I, Hirst M, Lopez-Otin C, Majumder P, Marra M, McPherson JD, Nakagawa H, Ning Z, Puente XS, Ruan Y, Shibata T, Stratton MR, Stunnenberg HG, Swerdlow H, Velculescu VE, Wilson RK, Xue HH, Yang L, Spellman PT, Bader GD, Boutros PC, Campbell PJ, Flicek P, Getz G, Guigo R, Guo G, Haussler D, Heath S, Hubbard TJ, Jiang T, Jones SM, Li Q, Lopez-Bigas N, Luo R, Muthuswamy L, Ouellette BF, Pearson JV, Puente XS, Quesada V, Raphael BJ, Sander C, Shibata T, Speed TP, Stein LD, Stuart JM, Teague JW, Totoki Y, Tsunoda T, Valencia A, Wheeler DA, Wu H, Zhao S, Zhou G, Stein LD, Guigo R, Hubbard TJ, Joly Y, Jones SM, Kasprzyk A, Lathrop M, Lopez-Bigas N, Ouellette BF, Spellman PT, Teague JW, Thomas G, Valencia A, Yoshida T, Kennedy KL, Axton M, Dyke SO, Futreal PA, Gerhard DS, Gunter C, Guyer M, Hudson TJ, McPherson JD, Miller LJ, Ozenberger B, Shaw KM, Kasprzyk A, Stein LD, Zhang J, Haider SA, Wang J, Yung CK, Cros A, Liang Y, Gnaneshan S, Guberman J, Hsu J, Bobrow M, Chalmers DR, Hasel KW, Joly Y, Kaan TS, Kennedy KL, Knoppers BM, Lowrance WW, Masui T, Nicolas P, Rial-Sebbag E, Rodriguez LL, Vergely C, Yoshida T, Grimmond SM, Biankin AV, Bowtell DD, Cloonan N, deFazio A, Eshleman JR, Etemadmoghadam D, Gardiner BB, Kench JG, Scarpa A, Sutherland RL, Tempero MA, Waddell NJ, Wilson PJ, McPherson JD, Gallinger S, Tsao MS, Shaw PA, Petersen GM, Mukhopadhyay D, Chin L, DePinho RA, Thayer S, Muthuswamy L, Shazand K, Beck T, Sam M, Timms L, Ballin V, Lu Y, Ji J, Zhang X, Chen F, Hu X, Zhou G, Yang Q, Tian G, Zhang L, Xing X, Li X, Zhu Z, Yu Y, Yu J, Yang H, Lathrop M, Tost J, Brennan P, Holcatova I, Zaridze D, Brazma A, Egevard L, Prokhortchouk E, Banks RE, Uhlen M, Cambon-Thomsen A, Viksna J, Ponten F, Skryabin K, Stratton MR, Futreal PA, Birney E, Borg A, Borresen-Dale AL, Caldas C, Foekens JA, Martin S, Reis-Filho JS, Richardson AL, Sotiriou C, Stunnenberg HG, Thoms G, van de Vijver M, van't Veer L, Calvo F, Birnbaum D, Blanche H, Boucher P, Boyault S, Chabannon C, Gut I, Masson-Jacquemier JD, Lathrop M, Pauporte I, Pivot X, Vincent-Salomon A, Tabone E, Theillet C, Thomas G, Tost J, Treilleux I, Calvo F, Bioulac-Sage P, Clement B, Decaens T, Degos F, Franco D, Gut I, Gut M, Heath S, Lathrop M, Samuel D, Thomas G, Zucman-Rossi J, Lichter P, Eils R, Brors B, Korbel JO, Korshunov A, Landgraf P, Lehrach H, Pfister S, Radlwimmer B, Reifenberger G, Taylor MD, von Kalle C, Majumder PP, Sarin R, Rao TS, Bhan MK, Scarpa A, Pederzoli P, Lawlor RA, Delledonne M, Bardelli A, Biankin AV, Grimmond SM, Gress T, Klimstra D, Zamboni G, Shibata T, Nakamura Y, Nakagawa H, Kusada J, Tsunoda T, Miyano S, Aburatani H, Kato K, Fujimoto A, Yoshida T, Campo E, Lopez-Otin C, Estivill X, Guigo R, de Sanjose S, Piris MA, Montserrat E, Gonzalez-Diaz M, Puente XS, Jares P, Valencia A, Himmelbauer H, Quesada V, Bea S, Stratton MR, Futreal PA, Campbell PJ, Vincent-Salomon A, Richardson AL, Reis-Filho JS, van de Vijver M, Thomas G, Masson-Jacquemier JD, Aparicio S, Borg A, Borresen-Dale AL, Caldas C, Foekens JA, Stunnenberg HG, van't Veer L, Easton DF, Spellman PT, Martin S, Barker AD, Chin L, Collins FS, Compton CC, Ferguson ML, Gerhard DS, Getz G, Gunter C, Guttmacher A, Guyer M, Hayes DN, Lander ES, Ozenberger B, Penny R, Peterson J, Sander C, Shaw KM, Speed TP, Spellman PT, Vockley JG, Wheeler DA, Wilson RK, Hudson TJ, Chin L, Knoppers BM, Lander ES, Lichter P, Stein LD, Stratton MR, Anderson W, Barker AD, Bell C, Bobrow M, Burke W, Collins FS, Compton CC, DePinho RA, Easton DF, Futreal PA, Gerhard DS, Green AR, Guyer M, Hamilton SR, Hubbard TJ, Kallioniemi OP, Kennedy KL, Ley TJ, Liu ET, Lu Y, Majumder P, Marra M, Ozenberger B, Peterson J, Schafer AJ, Spellman PT, Stunnenberg HG, Wainwright BJ, Wilson RK, Yang H (2010) International network of cancer genome projects. Nature 464(7291):993–998. doi:10.1038/nature08987

    Article  CAS  Google Scholar 

  93. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, Teague JW, Campbell PJ, Stratton MR, Futreal PA (2011) COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res 39(Database issue):D945–D950. doi:10.1093/nar/gkq929

    Article  CAS  PubMed  Google Scholar 

  94. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, Teague J, Futreal PA, Stratton MR, Wooster R (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91(2):355–358. doi:10.1038/sj.bjc.6601894

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, Tamborero D, Schroeder MP, Jene-Sanz A, Santos A, Lopez-Bigas N (2013) IntOGen-mutations identifies cancer drivers across tumor types. Nat Methods 10(11):1081–1082. doi:10.1038/nmeth.2642

    Article  CAS  PubMed  Google Scholar 

  96. Wu TJ, Schriml LM, Chen QR, Colbert M, Crichton DJ, Finney R, Hu Y, Kibbe WA, Kincaid H, Meerzaman D, Mitraka E, Pan Y, Smith KM, Srivastava S, Ward S, Yan C, Mazumder R (2015) Generating a focused view of disease ontology cancer terms for pan-cancer data integration and analysis. Database (Oxford) 2015:bav032. doi:10.1093/database/bav032

    Article  Google Scholar 

  97. Dinkel H, Chica C, Via A, Gould CM, Jensen LJ, Gibson TJ, Diella F (2011) Phospho.ELM: a database of phosphorylation sites--update 2011. Nucleic Acids Res 39(Database issue):D261–D267. doi:10.1093/nar/gkq1104

    Article  CAS  PubMed  Google Scholar 

  98. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40(Database issue):D261–D270. doi:10.1093/nar/gkr1122

    Article  CAS  PubMed  Google Scholar 

  99. Gnad F, Ren S, Cox J, Olsen JV, Macek B, Oroshi M, Mann M (2007) PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol 8(11):R250. doi:10.1186/gb-2007-8-11-r250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze WX (2008) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36(Database issue):D1015–D1021. doi:10.1093/nar/gkm812

    CAS  PubMed  Google Scholar 

  101. Gupta R, Birch H, Rapacki K, Brunak S, Hansen JE (1999) O-GLYCBASE version 4.0: a revised database of O-glycosylated proteins. Nucleic Acids Res 27(1):370–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee TY, Huang HD, Hung JH, Huang HY, Yang YS, Wang TH (2006) dbPTM: an information repository of protein post-translational modification. Nucleic Acids Res 34(Database issue):D622–D627. doi:10.1093/nar/gkj083

    Article  CAS  PubMed  Google Scholar 

  103. Lee TY, Chen YJ, Lu CT, Ching WC, Teng YC, Huang HD, Chen YJ (2012) dbSNO: a database of cysteine S-nitrosylation. Bioinformatics 28(17):2293–2295. doi:10.1093/bioinformatics/bts436

    Article  CAS  PubMed  Google Scholar 

  104. Li J, Jia J, Li H, Yu J, Sun H, He Y, Lv D, Yang X, Glocker MO, Ma L, Yang J, Li L, Li W, Zhang G, Liu Q, Li Y, Xie L (2014) SysPTM 2.0: an updated systematic resource for post-translational modification. Database (Oxford) 2014:bau025. doi:10.1093/database/bau025

    Article  CAS  Google Scholar 

  105. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A (2009) Human protein reference database--2009 update. Nucleic Acids Res 37(Database issue):D767–D772. doi:10.1093/nar/gkn892

    Article  CAS  PubMed  Google Scholar 

  106. Pan Y, Karagiannis K, Zhang H, Dingerdissen H, Shamsaddini A, Wan Q, Simonyan V, Mazumder R (2014) Human germline and pan-cancer variomes and their distinct functional profiles. Nucleic Acids Res 42(18):11570–11588. doi:10.1093/nar/gku772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Farriol-Mathis N, Garavelli JS, Boeckmann B, Duvaud S, Gasteiger E, Gateau A, Veuthey AL, Bairoch A (2004) Annotation of post-translational modifications in the Swiss-Prot knowledge base. Proteomics 4(6):1537–1550. doi:10.1002/pmic.200300764

    Article  CAS  PubMed  Google Scholar 

  108. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O'Donovan C, Redaschi N, Yeh LS (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32(Database issue):D115–D119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Campbell MP, Peterson R, Mariethoz J, Gasteiger E, Akune Y, Aoki-Kinoshita KF, Lisacek F, Packer NH (2014) UniCarbKB: building a knowledge platform for glycoproteomics. Nucleic Acids Res 42(Database issue):D215–D221. doi:10.1093/nar/gkt1128

    Article  CAS  PubMed  Google Scholar 

  110. Campbell MP, Packer NH (2016) UniCarbKB: new database features for integrating glycan structure abundance, compositional glycoproteomics data, and disease associations. Biochim Biophys Acta. doi:10.1016/j.bbagen.2016.02.016

    Google Scholar 

  111. Heinrichs S, Li C, Look AT (2010) SNP array analysis in hematologic malignancies: avoiding false discoveries. Blood 115(21):4157–4161. doi:10.1182/blood-2009-11-203182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chorley BN, Wang X, Campbell MR, Pittman GS, Noureddine MA, Bell DA (2008) Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions: current and developing technologies. Mutat Res 659(1–2):147–157. doi:10.1016/j.mrrev.2008.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mi H, Thomas P (2009) PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol Biol 563:123–140. doi:10.1007/978-1-60761-175-2_7

    Article  CAS  PubMed  Google Scholar 

  114. Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8(8):1551–1566. doi:10.1038/nprot.2013.092

    Article  PubMed  CAS  Google Scholar 

  115. Mahmood AS, Wu TJ, Mazumder R, Vijay-Shanker K (2016) DiMeX: a text mining system for mutation-disease association extraction. PloS One 11(4):e0152725. doi:10.1371/journal.pone.0152725 PONE-D-15-16733 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Dingerdissen H, Motwani M, Karagiannis K, Simonyan V, Mazumder R (2013) Proteome-wide analysis of nonsynonymous single-nucleotide variations in active sites of human proteins. FEBS J 280(6):1542–1562. doi:10.1111/febs.12155

    Article  CAS  PubMed  Google Scholar 

  117. Swiss_Institute_of_Bioinformatics_Members (2016) The SIB swiss institute of bioinformatics' resources: focus on curated databases. Nucleic Acids Res 44(D1):D27–D37. doi:10.1093/nar/gkv1310

    Article  Google Scholar 

  118. Wan Q, Dingerdissen H, Fan Y, Gulzar N, Pan Y, Wu TJ, Yan C, Zhang H, Mazumder R (2015) BioXpress: an integrated RNA-seq-derived gene expression database for pan-cancer analysis. Database (Oxford) 2015. doi:10.1093/database/bav019

  119. Carithers LJ, Moore HM (2015) The Genotype-Tissue Expression (GTEx) project. Biopreserv Biobank 13(5):307–308. doi:10.1089/bio.2015.29031.hmm

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hattori M (2005) Finishing the euchromatic sequence of the human genome. Tanpakushitsu Kakusan Koso 50(2):162–168

    CAS  PubMed  Google Scholar 

  121. Jensen ON (2004) Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 8(1):33–41. doi:10.1016/j.cbpa.2003.12.009

    Article  PubMed  CAS  Google Scholar 

  122. Lu CT, Huang KY, Su MG, Lee TY, Bretana NA, Chang WC, Chen YJ, Chen YJ, Huang HD (2013) DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications. Nucleic Acids Res 41(Database issue):D295–D305. doi:10.1093/nar/gks1229

    Article  CAS  PubMed  Google Scholar 

  123. Radivojac P, Baenziger PH, Kann MG, Mort ME, Hahn MW, Mooney SD (2008) Gain and loss of phosphorylation sites in human cancer. Bioinformatics 24(16):i241–i247. doi:10.1093/bioinformatics/btn267

    Article  PubMed  PubMed Central  Google Scholar 

  124. Lim YP (2005) Mining the tumor phosphoproteome for cancer markers. Clin Cancer Res 11(9):3163–3169. doi:10.1158/1078-0432.CCR-04-2243

    Article  CAS  PubMed  Google Scholar 

  125. Yang JD, Roberts LR (2010) Hepatocellular carcinoma: a global view. Nat Rev Gastroenterol Hepatol 7(8):448–458. doi:10.1038/nrgastro.2010.100

    Article  PubMed  PubMed Central  Google Scholar 

  126. Norton PA, Comunale MA, Krakover J, Rodemich L, Pirog N, D'Amelio A, Philip R, Mehta AS, Block TM (2008) N-linked glycosylation of the liver cancer biomarker GP73. J Cell Biochem 104(1):136–149. doi:10.1002/jcb.21610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nakagawa T, Uozumi N, Nakano M, Mizuno-Horikawa Y, Okuyama N, Taguchi T, Gu J, Kondo A, Taniguchi N, Miyoshi E (2006) Fucosylation of N-glycans regulates the secretion of hepatic glycoproteins into bile ducts. J Biol Chem 281(40):29797–29806. doi:10.1074/jbc.M605697200

    Article  CAS  PubMed  Google Scholar 

  128. Marrero JA, Romano PR, Nikolaeva O, Steel L, Mehta A, Fimmel CJ, Comunale MA, D'Amelio A, Lok AS, Block TM (2005) GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma. J Hepatol 43(6):1007–1012. doi:10.1016/j.jhep.2005.05.028

    Article  CAS  PubMed  Google Scholar 

  129. Gill DJ, Clausen H, Bard F (2011) Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell Biol 21(3):149–158. doi:10.1016/j.tcb.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  130. Schjoldager KT, Clausen H (2012) Site-specific protein O-glycosylation modulates proprotein processing–deciphering specific functions of the large polypeptide GalNAc-transferase gene family. Biochim Biophys Acta 1820(12):2079–2094. doi:10.1016/j.bbagen.2012.09.014

    Article  CAS  PubMed  Google Scholar 

  131. Slawson C, Hart GW (2011) O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer 11(9):678–684. doi:10.1038/nrc3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80:825–858. doi:10.1146/annurev-biochem-060608-102511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ohta T, Fukuda M (2004) Ubiquitin and breast cancer. Oncogene 23(11):2079–2088. doi:10.1038/sj.onc.1207371

    Article  CAS  PubMed  Google Scholar 

  134. Kempen GI, Suurmeijer TP (1989) Depressive symptoms, invalidity and the use of professional home care by the elderly; replication and variations. Tijdschr Gerontol Geriatr 20(1):13–17

    CAS  PubMed  Google Scholar 

  135. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21. doi:10.1101/gad.947102

    Article  CAS  PubMed  Google Scholar 

  136. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428. doi:10.1038/nrg816

    CAS  PubMed  Google Scholar 

  137. Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2(Suppl 1):S4–11. doi:10.1038/ncponc0354

    Article  CAS  PubMed  Google Scholar 

  138. Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM et al (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 91(21):9700–9704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, OF H, Vanaclocha V, Baylin SB, Herman JG (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343(19):1350–1354. doi:10.1056/NEJM200011093431901

    Article  CAS  PubMed  Google Scholar 

  140. Ranzinger R, Aoki-Kinoshita KF, Campbell MP, Kawano S, Lutteke T, Okuda S, Shinmachi D, Shikanai T, Sawaki H, Toukach P, Matsubara M, Yamada I, Narimatsu H (2015) GlycoRDF: an ontology to standardize glycomics data in RDF. Bioinformatics 31(6):919–925. doi:10.1093/bioinformatics/btu732

    Article  CAS  PubMed  Google Scholar 

  141. Montecchi-Palazzi L, Beavis R, Binz PA, Chalkley RJ, Cottrell J, Creasy D, Shofstahl J, Seymour SL, Garavelli JS (2008) The PSI-MOD community standard for representation of protein modification data. Nat Biotechnol 26(8):864–866. doi:10.1038/nbt0808-864

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Mazumder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Gulzar, N., Dingerdissen, H., Yan, C., Mazumder, R. (2017). Impact of Nonsynonymous Single-Nucleotide Variations on Post-Translational Modification Sites in Human Proteins. In: Wu, C., Arighi, C., Ross, K. (eds) Protein Bioinformatics. Methods in Molecular Biology, vol 1558. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6783-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6783-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6781-0

  • Online ISBN: 978-1-4939-6783-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics