Skip to main content

Microfluidic DNA Stretching Device for Single-Molecule Diagnostics

  • Protocol
  • First Online:
Microchip Diagnostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1547))

  • 2244 Accesses

Abstract

The method described here enables the automatic stretching and patterning of single DNA molecules onto a solid surface. It does not require chemical modification of the DNA or surface modification of the substrate. To detect a signal variation caused by sequence-specific dye binding or partial melting, it is crucial that the DNA molecules are arrayed in a parallel direction inside the narrow microscopic field. The method uses zigzag-shaped microgrooves in a densely-arranged molecular patterning apparatus in a microfluidic channel. By syringing through the microchannel, over 1500 DNA molecules can be arrayed simultaneously in the microgrooves. It will therefore serve as a template preparation for DNA molecular diagnosis by high-resolution imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Neely RK, Deen J, Hofkens J (2011) Optical mapping of DNA: single-molecule-based methods for mapping genomes. Biopolymers 95:298–311

    Article  CAS  Google Scholar 

  2. Kim S et al (2012) Enzymatically incorporated genomic tags for optical mapping of DNA-binding proteins. Angew Chem Int Ed 51:3578–3581

    Article  CAS  Google Scholar 

  3. Michaeli Y et al (2013) Optical detection of epigenetic marks: sensitive quantification and direct imaging of individual hydroxymethylcytosine bases. Chem Commun 49:8599–8601

    Article  CAS  Google Scholar 

  4. Cerf A, Cipriany BR, Benitez JJ, Craighead HG (2011) Single DNA molecule patterning for high-throughput epigenetic mapping. Anal Chem 83:8073–8077

    Article  CAS  Google Scholar 

  5. Lebofsky R, Bensimon A (2003) Single DNA molecule analysis: applications of molecular combing. Brief Funct Genomic Proteomic 1:385–396

    Article  CAS  Google Scholar 

  6. Michalet X et al (1997) Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science 277:1518–1523

    Article  CAS  Google Scholar 

  7. Gueroui Z, Place C, Freyssingeas E, Berge B (2002) Observation by fluorescence microscopy of transcription on single combed DNA. Proc Natl Acad Sci USA 99:6005–6010

    Article  CAS  Google Scholar 

  8. Petit CAP, Carbeck JD (2003) Combing of molecules in microchannels (COMMIC): a method for micropatterning and orienting stretched molecules of DNA on a surface. Nano Lett 3:1141–1146

    Article  CAS  Google Scholar 

  9. Bensimon A et al (1994) Alignment and sensitive detection of DNA by a moving interface. Science 265:2096–2098

    Article  CAS  Google Scholar 

  10. Bensimon D, Simon AJ, Croquette V, Bensimon A (1995) Stretching DNA with a receding meniscus: experiments and models. Phys Rev Lett 74:4754–4757

    Article  CAS  Google Scholar 

  11. Allemand JF et al (1997) pH-dependent specific binding and combing of DNA. Biophys J 73:2064–2070

    Article  CAS  Google Scholar 

  12. Hu J et al (1996) Imaging of single extended DNA molecules on flat (aminopropyl)triethoxysilane-mica by atomic force microscopy. Langmuir 12:1697–1700

    Article  CAS  Google Scholar 

  13. Woolley AT, Kelly RT (2001) Deposition and characterization of extended single-stranded DNA molecules on surfaces. Nano Lett 1:345–348

    Article  CAS  Google Scholar 

  14. Aline C, Thomas A, Barton RA, Craighead HG (2011) Transfer-printing of single DNA molecule arrays on graphene for high-resolution electron imaging and analysis. Nano Lett 11:4232–4238

    Article  Google Scholar 

  15. Gentile F et al (2012) Direct imaging of DNA fibers: the visage of double helix. Nano Lett 12:6453–6458

    Article  CAS  Google Scholar 

  16. Lin CJ et al (2010) Patterning nanowire and micro-nanoparticle array on micropillar-structured surface: Experiment and modeling. Biomicrofluidics 4:034103

    Article  Google Scholar 

  17. Charlot B et al (2014) Elongated unique DNA strand deposition on microstructured substrate by receding meniscus assembly and capillary force. Biomicrofluidics 8:014103

    Article  CAS  Google Scholar 

  18. Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24:3563–3576

    Article  CAS  Google Scholar 

  19. Kaji N, Okamoto Y, Tokeshi M, Baba Y (2010) Nanopillar, nanoball, and nanofibers for highly efficient analysis of biomolecules. Chem Soc Rev 39:948–956

    Article  CAS  Google Scholar 

  20. Yasaki H et al (2015) Microfluidic transfer of liquid interface for parallel stretching and stamping of terminal-unmodified single DNA molecules in zigzag-shaped microgrooves. Lab Chip 15:135–140

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 26750146. This research is partly supported by the Japan Society for the Center of Innovation Program from Japan Science and Technology Agency, JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Onoshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Onoshima, D., Baba, Y. (2017). Microfluidic DNA Stretching Device for Single-Molecule Diagnostics. In: Taly, V., Viovy, JL., Descroix, S. (eds) Microchip Diagnostics. Methods in Molecular Biology, vol 1547. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6734-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6734-6_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6732-2

  • Online ISBN: 978-1-4939-6734-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics