Skip to main content

Physarum polycephalum for Studying the Function of Histone Modifications In Vivo

  • Protocol
  • First Online:
Histones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1528))

  • 2176 Accesses

Abstract

Histone modifications have been widely correlated with genetic activities. However, how these posttranslational modifications affect the dynamics and the structure of chromatin is poorly understood. Here, we describe the incorporation of the exogenous histone proteins into the slime mold Physarum polycephalum, which has been revealed to be a valuable tool for examining different facets of the function histones in chromatin dynamics like replication-coupled chromatin assembly, histone exchange, and nucleosome turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang H, Sabari BR, Garcia BA, Allis CD, Zhao Y (2014) SnapShot: histone modifications. Cell 159:458–458.e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  4. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  5. Gardner KE, Allis CD, Strahl BD (2011) Operating on chromatin, a colorful language where context matters. J Mol Biol 409:36–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wolffe AP, Hayes JJ (1999) Chromatin disruption and modification. Nucleic Acids Res 27:711–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Megee PC, Morgan BA, Mittman BA, Smith MM (1990) Genetic analysis of histone H4: essential role of lysines subject to reversible acetylation. Science 247:841–845

    Article  CAS  PubMed  Google Scholar 

  8. Megee PC, Morgan BA, Smith MM (1995) Histone H4 and the maintenance of genome integrity. Genes Dev 9:1716–1727

    Article  CAS  PubMed  Google Scholar 

  9. Hong L, Schroth GP, Matthews HR, Yau P, Bradbury EM (1993) Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA. J Biol Chem 268:305–314

    CAS  PubMed  Google Scholar 

  10. Wang X, Hayes JJ (2008) Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol Cell Biol 28:227–236

    Article  CAS  PubMed  Google Scholar 

  11. Thiriet C, Hayes JJ (1999) Histone proteins in vivo: cell-cycle-dependent physiological effects of exogenous linker histones incorporated into Physarum polycephalum. Methods 17:140–150

    Article  CAS  PubMed  Google Scholar 

  12. Oppenheim A, Katzir N (1971) Advancing the onset of mitosis by cell free preparations of Physarum polycephalum. Exp Cell Res 68:224–226

    Article  CAS  PubMed  Google Scholar 

  13. Bradbury EM, Inglis RJ, Matthews HR, Langan TA (1974) Molecular basis of control of mitotic cell division in eukaryotes. Nature 249:553–556

    Article  CAS  PubMed  Google Scholar 

  14. Prior CP, Cantor CR, Johnson EM, Allfrey VG (1980) Incorporation of exogenous pyrene-labeled histone into Physarum chromatin: a system for studying changes in nucleosomes assembled in vivo. Cell 20:597–608

    Article  CAS  PubMed  Google Scholar 

  15. Prior CP, Cantor CR, Johnson EM, Littau VC, Allfrey VG (1983) Reversible changes in nucleosome structure and histone H3 accessibility in transcriptionally active and inactive states of rDNA chromatin. Cell 34:1033–1042

    Article  CAS  PubMed  Google Scholar 

  16. Ejlassi-Lassallette A, Mocquard E, Arnaud MC, Thiriet C (2011) H4 replication-dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo. Mol Biol Cell 22:245–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Elliott OG, Murphy K, Hayes JJ, Thiriet C (2013) Replication-independent nucleosome exchange is enhanced by local and specific acetylation of histone H4. Nucleic Acids Res 4:2228–2238

    Article  CAS  Google Scholar 

  18. Thiriet C (2004) Analysis of chromatin assembled in vivo using exogenous histones in Physarum polycephalum. Methods 33:86–92

    Article  CAS  PubMed  Google Scholar 

  19. Thiriet C, Hayes JJ (2005) Replication-independent core histone dynamics at transcriptionally active loci in vivo. Genes Dev 19:677–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hayes JJ, Lee KM (1997) In vitro reconstitution and analysis of mononucleosomes containing defined DNAs and proteins. Methods 12:2–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by grants of “La Ligue contre le Cancer” région grand ouest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Thiriet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Menil-Philippot, V., Thiriet, C. (2017). Physarum polycephalum for Studying the Function of Histone Modifications In Vivo. In: Guillemette, B., Gaudreau, L. (eds) Histones. Methods in Molecular Biology, vol 1528. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6630-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6630-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6628-8

  • Online ISBN: 978-1-4939-6630-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics