Skip to main content

Isolation of Chromoplasts and Suborganellar Compartments from Tomato and Bell Pepper Fruit

  • Protocol
  • First Online:
Isolation of Plant Organelles and Structures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1511))

Abstract

Tomato is a model for fruit development and ripening. The isolation of intact plastids from this organism is therefore important for metabolic and proteomic analyses. Pepper, a species from the same family, is also of interest since it allows isolation of intact chromoplasts in large amounts. Here, we provide a detailed protocol for the isolation of tomato plastids at three fruit developmental stages, namely, nascent chromoplasts from the mature green stage, chromoplasts from an intermediate stage, and fully differentiated red chromoplasts. The method relies on sucrose density gradient centrifugations. It yields high purity organelles suitable for proteome analyses. Enzymatic and microscopy assays are summarized to assess purity and intactness. A method is also described for subfractionation of pepper chromoplast lipoprotein structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egea I, Barsan C, Bian WP et al (2010) Chromoplast differentiation: current status and perspectives. Plant Cell Physiol 51:1601–1611

    Article  CAS  PubMed  Google Scholar 

  2. Camara B, Hugueney P, Bouvier F et al (1995) Biochemistry and molecular biology of chromoplast development. Int Rev Cytol 163:175–247

    Article  CAS  PubMed  Google Scholar 

  3. Angaman DM, Petrizzo R, Hernandez-Gras F et al (2012) Precursor uptake assays and metabolic analyses in isolated tomato fruit chromoplasts. Plant Methods 8(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barsan C, Sanchez-Bel P, Rombaldi C et al (2010) Characteristics of the tomato chromoplast revealed by proteomic analysis. J Exp Bot 61:2413–2431

    Article  CAS  PubMed  Google Scholar 

  5. Pateraki I, Renato M, Azcon-Bieto J et al (2013) An ATP synthase harboring an atypical gamma-subunit is involved in ATP synthesis in tomato fruit chromoplasts. Plant J 74:74–85

    Article  CAS  PubMed  Google Scholar 

  6. Wang YQ, Yang Y, Fei ZJ et al (2013) Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development. J Exp Bot 64:949–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zeng YL, Pan ZY, Ding YD et al (2011) A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck]. J Exp Bot 62:5297–5309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Siddique MA, Grossmann J, Gruissem W et al (2006) Proteome analysis of bell pepper (Capsicum annuum L.) chromoplasts. Plant Cell Physiol 47:1663–1673

    Article  CAS  PubMed  Google Scholar 

  9. Egea I, Bian WP, Barsan C et al (2011) Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue. Ann Bot 108:291–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Waters MT, Fray RG, Pyke KA (2004) Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell. Plant J 39:655–667

    Article  PubMed  Google Scholar 

  11. Barsan C, Zouine M, Maza E et al (2012) Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components. Plant Physiol 160:708–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bathgate B, Purton ME, Grierson D et al (1985) Plastid changes during the conversion of chloroplasts to chromoplasts in ripening tomatoes. Planta 165:197–204

    Article  CAS  PubMed  Google Scholar 

  13. Schulz A, Knoetzel J, Scheller HV et al (2004) Uptake of a fluorescent dye as a swift and simple indicator of organelle intactness: import-competent chloroplasts from soil-grown Arabidopsis. J Histochem Cytochem 52:701–704

    Article  CAS  PubMed  Google Scholar 

  14. Marti MC, Camejo D, Olmos E et al (2009) Characterisation and changes in the antioxidant system of chloroplasts and chromoplasts isolated from green and mature pepper fruits. Plant Biol 11:613–624

    Article  CAS  PubMed  Google Scholar 

  15. van Wijk KJ, Peltier JB, Giacomelli L (2007) Isolation of chloroplast proteins from Arabidopsis thaliana for proteome analysis. Methods Mol Biol 355:43–48

    PubMed  Google Scholar 

  16. Hadjeb N, Gounaris I, Price CA (1988) Chromoplast-specific proteins in capsicum-annuum. Plant Physiol 88:42–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baerenfaller K, Gruissem W, Baginsky S et al (2008) Chapter 11: Species-dependent proteomics In: von Hargen J (ed) Proteomics sample preparation. Weinheim: Wiley-VCH

    Google Scholar 

  18. Campbell DA, Cockshutt AM, Porankiewicz-Asplund J (2003) Analysing photosynthetic complexes in uncharacterized species or mixed microalgal communities using global antibodies. Physiol Plant 119:322–327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to all participants in the chloroplast-to-chromoplast transition project developed at ENSAT-INRA Toulouse. Paloma Sanchez-Bel, Isabel Egea, Wanping Bian, and Alain Latché have contributed to the isolation of chromoplasts and proteomic analysis. Christian Chervin and Alain Jauneau have carried out the work on confocal laser spectrometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Pech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Barsan, C., Kuntz, M., Pech, JC. (2017). Isolation of Chromoplasts and Suborganellar Compartments from Tomato and Bell Pepper Fruit. In: Taylor, N., Millar, A. (eds) Isolation of Plant Organelles and Structures. Methods in Molecular Biology, vol 1511. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6533-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6533-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6531-1

  • Online ISBN: 978-1-4939-6533-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics