Skip to main content

DNA Fiber Spreading Assay to Test HDACi Effects on DNA and Its Replication

  • Protocol
  • First Online:
HDAC/HAT Function Assessment and Inhibitor Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1510))

Abstract

DNA fiber spreading assay is an invaluable technique to visualize and follow the spatial and temporal progress of individual DNA replication forks. It provides information on the DNA replication progress and its regulation under normal conditions as well as on replication stress induced by environmental genotoxic agents or cancer drugs. The method relies on the detection of incorporated thymidine analogues during DNA synthesis in the S phase of the cell cycle by indirect immunofluorescence. Here, we describe the procedure established in our laboratories for sequential pulse labeling of human cells with 5-chloro-2′-deoxyuridine (CldU) and 5-iodo-2′-deoxyuridine (IdU), cell lysis, and DNA fiber spreading on slides and sequential immunodetection of the incorporated thymidine analogues by primary antibodies recognizing specifically CldU or IdU alone. We describe also the laser scanning imaging, classification, and measurement of the detected DNA fiber tracks. The obtained quantitative data can be evaluated statistically to reveal the immediate or long-term effects of DNA-damaging agents, DNA repair inhibitors, and epigenetic modulators like HDAC inhibitors on DNA replication in normal and tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tuduri S, Tourriere H, Pasero P (2010) Defining replication origin efficiency using DNA fiber assays. Chromosome Res 18:91–102

    Article  CAS  PubMed  Google Scholar 

  2. Helleday T (2003) Pathways for mitotic homologous recombination in mammalian cells. Mutat Res 532:103–115

    Article  CAS  PubMed  Google Scholar 

  3. Jackson DA, Pombo A (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 140:1285–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maya-Mendoza A, Petermann E, Gillespie DAF, Caldecott KW, Jackson DA (2007) Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J 26:2719–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Conti C, Sacca B, Herrick J, Lalou C, Pommier Y, Bensimon A (2007) Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol Biol Cell 18:3059–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frum RA, Khondker ZS, Kaufman DG (2009) Temporal differences in DNA replication during the S phase using single fiber analysis of normal human fibroblasts and glioblastoma T98G cells. Cell Cycle 8:3133–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Merrick CJ, Jackson D, Diffley JF (2004) Visualization of altered replication dynamics after DNA damage in human cells. J Biol Chem 279:20067–20075

    Article  CAS  PubMed  Google Scholar 

  8. Bryant HE, Petermann E, Schultz N, Jemth AS, Loseva O, Issaeva N et al (2009) PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J 28:2601–2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Conti C, Leo E, Eichler GS, Sordet O, Martin MM, Fan A et al (2010) Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage. Cancer Res 70:4470–4480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wells CE, Bhaskara S, Stengel KR, Zhao Y, Sirbu B, Chagot B et al (2013) Inhibition of histone deacetylase 3 causes replication stress in cutaneous T cell lymphoma. PLoS One 8, e68915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Suzuki T, Ando T, Tsuchiya K, Fukazawa N, Saito A, Mariko Y et al (1999) Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. J Med Chem 42:3001–3003

    Article  CAS  PubMed  Google Scholar 

  12. Wurster S, Hennes F, Parplys AC, Seelbach JI, Mansour WY, Zielinski A et al (2016) PARP1 inhibition radiosensitizes HNSCC cells deficient in homologous recombination by disabling the DNA replication fork elongation response. Oncotarget 7:9732–9741

    PubMed  PubMed Central  Google Scholar 

  13. Parplys AC, Petermann E, Petersen C, Dikomey E, Borgmann K (2012) DNA damage by X-rays and their impact on replication processes. Radiother Oncol 102:466–471

    Article  CAS  PubMed  Google Scholar 

  14. Nikkila J, Parplys AC, Pylkas K, Bose M, Huo Y, Borgmann K et al (2013) Heterozygous mutations in PALB2 cause DNA replication and damage response defects. Nat Commun 4:2578

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by DFG (German Research Foundation), grant No. Ni1319/1-1, and by Deutsche Krebshilfe, grant No. 110909, for Anja Göder. We thank Alexandra Zielinski for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodora Nikolova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nikolova, T., Göder, A., Parplys, A., Borgmann, K. (2017). DNA Fiber Spreading Assay to Test HDACi Effects on DNA and Its Replication. In: Krämer, O. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 1510. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6527-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6527-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6525-0

  • Online ISBN: 978-1-4939-6527-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics